

[1] Oracle® Retail Job Orchestration and Scheduler
Implementation Guide

Release 16.0.023

E89485-01

January 2018

Oracle® Retail Job Orchestration and Scheduler Implementation Guide Release 16.0.023

 E89485-01

Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

Primary Author: Sanal Parameshwaram

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Value-Added Reseller (VAR) Language

Oracle Retail VAR Applications

The following restrictions and provisions only apply to the programs referred to in this section and licensed
to you. You acknowledge that the programs may contain third party software (VAR applications) licensed to
Oracle. Depending upon your product and its version number, the VAR applications may include:

(i) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail Data
Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(ii) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of Kirkland,
Washington, to Oracle and imbedded in Oracle Retail Mobile Store Inventory Management.

(iii) the software component known as Access Via™ licensed by Access Via of Seattle, Washington, and
imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(iv) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of San Jose,
California, and imbedded in Oracle Retail Promotion Planning & Optimization application.

You acknowledge and confirm that Oracle grants you use of only the object code of the VAR Applications.
Oracle will not deliver source code to the VAR Applications to you. Notwithstanding any other term or
condition of the agreement and this ordering document, you shall not cause or permit alteration of any VAR
Applications. For purposes of this section, "alteration" refers to all alterations, translations, upgrades,
enhancements, customizations or modifications of all or any portion of the VAR Applications including all

reconfigurations, reassembly or reverse assembly, re-engineering or reverse engineering and recompilations
or reverse compilations of the VAR Applications or any derivatives of the VAR Applications. You
acknowledge that it shall be a breach of the agreement to utilize the relationship, and/or confidential
information of the VAR Applications for purposes of competitive discovery.

The VAR Applications contain trade secrets of Oracle and Oracle's licensors and Customer shall not attempt,
cause, or permit the alteration, decompilation, reverse engineering, disassembly or other reduction of the
VAR Applications to a human perceivable form. Oracle reserves the right to replace, with functional
equivalent software, any of the VAR Applications in future releases of the applicable program.

v

Contents

Send Us Your Comments ... xiii

Preface ... xv

Audience... xv
Documentation Accessibility ... xv
Customer Support ... xv
Review Patch Documentation ... xv
Improved Process for Oracle Retail Documentation Corrections .. xvi
Oracle Retail Documentation on the Oracle Technology Network ... xvi
Conventions ... xvi

1 Introduction

Standards and Specifications... 1-1
Java Platform Enterprise Edition (Java EE) .. 1-1
Java Batch .. 1-1
Java EE Server... 1-2

Java Batch Overview .. 1-2

2 JOS Components

JOS Architecture ... 2-1

3 Job Admin

Job Admin Concepts .. 3-1
Job Admin Components ... 3-1

RESTFul Services.. 3-1
Batch Service .. 3-1
Job Metrics Service.. 3-4

Job Admin UI.. 3-6
Best Practices... 3-6
Job Admin Security.. 3-6
Job Admin Customization .. 3-7
Job Admin Troubleshooting ... 3-7

Deployment Error ... 3-7
Runtime WSMException.. 3-8

vi

Missing System Credentials .. 3-9
Missing System Options .. 3-9

4 JOS Process Flow

Process Flow .. 4-1
Process Flow Concepts .. 4-1

DSL (Domain Specific Language).. 4-2
Begin Activity .. 4-2
Activity ... 4-2
End Activity ... 4-2
Process Variables... 4-2
External Variables ... 4-2

Process Flow DSL ... 4-3
Process Flow DSL Characteristics.. 4-3
DSL Keywords.. 4-4

Process Flow Instrumentation ... 4-8
Sub-Processes .. 4-8
Process Schema ... 4-9
Process Restart .. 4-9
Statuses... 4-9
Implementing a JOS Flow ... 4-10
Activity Features .. 4-10

Skip Activity .. 4-11
REST Endpoint to Set the Skip Activity Flag .. 4-11
Hold/Release Activity.. 4-11
REST Endpoint to Set the Hold Activity Flag ... 4-11
Bulk Skip/Hold ... 4-11
Callback Service... 4-12
How to Start Process Flow with Input Parameters .. 4-12
Call Back from the Process Flow... 4-13
How to Invoke the Callback Service Declaratively.. 4-13

How to Invoke the Callback Service Programmatically .. 4-17
Callback Request Payload Structure ... 4-18

Process Execution Trace ... 4-20
Process Metrics Service .. 4-21

Process Security ... 4-23
Process Customization ... 4-23

Seed Data.. 4-23
Process DSL Reload .. 4-23

Troubleshooting .. 4-24
Process Flow Did Not Start.. 4-24
Deleted Process Flow Still Listed in the UI ... 4-24

Best Practices for Process Flow DSL .. 4-24

5 Scheduler

JOS Scheduler Features... 5-1
Scheduler Concepts.. 5-1

vii

Schedule Definition.. 5-2
Schedule Execution .. 5-2
Schedule Types... 5-2
Interval Schedules .. 5-2
Calendar Schedules.. 5-2

Scheduling Mechanisms ... 5-2
Simple Scheduling.. 5-2
Advanced Scheduling.. 5-3
Schedule Frequency ... 5-3

Schedule Start Datetime... 5-3
Schedule End Datetime.. 5-4
Recurrence / Repeat Interval .. 5-4
Schedule Next Run Datetime .. 5-4
Schedule Timzone... 5-4

Schedule Action.. 5-4
Schedule Action Definition.. 5-4

Schedule Action Type.. 5-5
Sync Action ... 5-6
Async Action .. 5-6
Schedule Action Execution Status ... 5-6
Schedule Action Type and Execution Status .. 5-6
Sync Action Execution Statuses .. 5-6
Async Action Execution Statuses ... 5-6
Schedule Status.. 5-7

Scheduler Runtime .. 5-7
Scheduler Startup... 5-7
Schedule Runtime Execution.. 5-7
Schedule Execution - Async Action... 5-8
Schedule Execution - Sync Action ... 5-8
Schedule Execution Failover... 5-9
Schedule Notification .. 5-9
Scheduler Infrastructure Schema.. 5-10
Best Practices for Scheduler ... 5-10

Scheduler Console... 5-11
Schedule Summary ... 5-11

Schedules and Executions... 5-11
Manage Schedules... 5-12

Creating a Schedule .. 5-13
Basic Information ... 5-13
Schedule Action.. 5-14
Schedule Frequency... 5-14

Schedule Notification ... 5-15
Starts: ... 5-16
Fails: ... 5-16
Triggered / Completed:.. 5-16
Updating a Schedule ... 5-16
Disabling a Schedule ... 5-17

viii

Enabling a Schedule... 5-18
Deleting a Schedule ... 5-18
Schedule a Manual Run .. 5-19
Schedule Executions .. 5-19
Manage Configurations .. 5-20
System Logs .. 5-21

Scheduler Security Considerations.. 5-22
Scheduler Security... 5-22

Scheduler Operational Considerations... 5-23
Users Roles for Monitoring and Administration.. 5-23
Monitoring Schedules... 5-23

Schedule Action Execution Log ... 5-23
Scheduler Log Files ... 5-24
Maintaining Historical Schedule Executions .. 5-24

Scheduler Customization... 5-25
Seed Data Reload... 5-25
Customizing Seed Data Schedules ... 5-25
Customizing Schedule Actions ... 5-26

Scheduler Troubleshooting ... 5-27
Scheduler Known Issues.. 5-28

6 Use Cases

Creating Job Admin Batch Jobs... 6-1
Sample Job XML... 6-1
Passing Job Parameters ... 6-1
Passing System Options .. 6-2
Passing System Properties .. 6-2
Chaining Multiple Jobs.. 6-3

Sample Process Flow .. 6-3
Creating Split Flows .. 6-4

Sample Split Flow... 6-5
Creating Split and Join Flows .. 6-6

Sample Split and Join Flow... 6-6
DefProcess Flow ... 6-7
XyzProcess Flow... 6-8

Creating a Join Flow with Other Flows ... 6-8
Sample Join Flow.. 6-9

Sharing Data Between Process Flows .. 6-9
Sample Flow that Shares Information with Other Flows... 6-9

Creating Schedules in Scheduler ... 6-10
Using Sample Seed Data to Create a Schedule ... 6-10

Scheduling an Action DSL.. 6-11
Sample Action DSL.. 6-11

7 Pre-Implementation Considerations

Thread Pool Size in WebLogic... 7-1
Database Connection Pool Size in WebLogic... 7-1

ix

8 High Availability Considerations

About High Availability ... 8-1
WebLogic Server Cluster Concepts .. 8-1
Scaling JOS .. 8-2
JOS on Cluster... 8-2

Logging.. 8-2
Update Log Level ... 8-3
Create/Update/Delete System Options... 8-3
Create/Update/Delete System Credentials... 8-3
Scheduler Configuration Changes for Cluster... 8-3

9 Deployment Architecture

JOS and BDI Deployment Architecture for RMS .. 9-1
JOS Deployment Architecture ... 9-1
JOS Scalable Deployment Architecture... 9-2

10 Performance Considerations

CPU and Memory Considerations ... 10-1

11 OAuth 2.0

OAuth 2.0 Architecture Diagram.. 11-1
OAuth 2.0 Concepts .. 11-1
OAuth 2.0 Use Case Flow... 11-2
OAuth 2.0 Terms.. 11-2
JOS OAuth 2.0 Architecture .. 11-2
OAuth 2 Service Provider .. 11-3

Service Provider Configuration .. 11-3
Scopes .. 11-3

OHS Configuration ... 11-4
OAuth Server Public Certificate.. 11-4
OAuth 2.0 Servlet Filter.. 11-4

OAuth 2.0 Service Consumer .. 11-5
Access Services using OAuth 2.0 Consumer API... 11-5

Consumer Configuration .. 11-5
Access Services using Curl ... 11-6

A Appendix A: Scheduler REST Endpoints

REST Resource Descriptions ... A-1

x

B Appendix B: Process Flow REST Endpoints

C Appendix C: Job Admin REST Endpoints

D Appendix D: System Setting Service

Managing System Options Using Curl ... D-2
Creating System Options ... D-2
Updating System Options.. D-2
Deleting System Options.. D-2
Resetting System Options Cache .. D-3
Listing System Options .. D-3

Managing Credentials Using Curl ... D-3
Creating Credentials ... D-3
Updating Credentials ... D-3
Deleting Credentials ... D-3
Listing Credentials .. D-3

E Appendix E: Scheduler UI Screenshots

Scheduler Summary ... E-1
Manage Schedules - Schedule Executions.. E-1

Manage Schedules - Create Schedule... E-2
Schedule Executions ... E-2
Manage Configurations ... E-3

Log Level .. E-3
Notifications... E-3
System Options.. E-4

System Logs .. E-4

F Appendix F: Process Flow UI Screenshots

About Process Flow Live ... F-1
About Manage Process Flow - Process Flow Executions ... F-1
Manage Process Flow - Process Flow Configurations.. F-2
Manage Process Flow - Launch Process Flow .. F-3
Manage Process Flow - Process Flow Details - Process Details ... F-3
Manage Process Flow - Process Flow Details - Process DSL .. F-4
Historical Process Flow Executions ... F-4
Managing Configurations ... F-4

System Options.. F-5
Log Level .. F-5
Process Notifications .. F-6

About System Logs ... F-6

G Appendix G: Job Admin UI Screenshots

About the Batch Summary... G-1
Manage Batch Jobs - Job Executions.. G-1

xi

Manage Batch Jobs - Job Launch .. G-2
Job Stop... G-2

Manage Batch Jobs - Job Definition - Job Details .. G-3
Manage Batch Jobs - Job Definition - Job XML Content... G-3
Manage Configurations ... G-4
System Logs .. G-5

xii

xiii

Send Us Your Comments

Oracle Retail Job Orchestration and Scheduler Implementation Guide, Release
16.0.023.

Oracle welcomes customers' comments and suggestions on the quality and usefulness
of this document.

Your feedback is important, and helps us to best meet your needs as a user of our
products. For example:

■ Are the implementation steps correct and complete?

■ Did you understand the context of the procedures?

■ Did you find any errors in the information?

■ Does the structure of the information help you with your tasks?

■ Do you need different information or graphics? If so, where, and in what format?

■ Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell
us your name, the name of the company who has licensed our products, the title and
part number of the documentation and the chapter, section, and page number (if
available).

Note: Before sending us your comments, you might like to check
that you have the latest version of the document and if any concerns
are already addressed. To do this, access the Online Documentation
available on the Oracle Technology Network Web site. It contains the
most current Documentation Library plus all documents revised or
released recently.

Send your comments to us using the electronic mail address: retail-doc_us@oracle.com

Please give your name, address, electronic mail address, and telephone number
(optional).

If you need assistance with Oracle software, then please contact your support
representative or Oracle Support Services.

If you require training or instruction in using Oracle software, then please contact your
Oracle local office and inquire about our Oracle University offerings. A list of Oracle
offices is available on our Web site at http://www.oracle.com.

xiv

xv

Preface

This is a documentation of the Oracle Retail Job Orchestration and Scheduler
Implementation Guide.

Audience
The Implementation Guide is intended for the Oracle Retail Job Orchestration and
Scheduler application integrators and implementation staff, as well as the retailer's IT
personnel.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Customer Support
To contact Oracle Customer Support, access My Oracle Support at the following URL:

https://support.oracle.com

When contacting Customer Support, please provide the following:

■ Product version and program/module name

■ Functional and technical description of the problem (include business impact)

■ Detailed step-by-step instructions to re-create

■ Exact error message received

■ Screen shots of each step you take

Review Patch Documentation
When you install the application for the first time, you install either a base release (for
example, 16.0) or a later patch release (for example, 16.0.023). If you are installing the

xvi

base release or additional patches, read the documentation for all releases that have
occurred since the base release before you begin installation. Documentation for patch
releases can contain critical information related to the base release, as well as
information about code changes since the base release.

Improved Process for Oracle Retail Documentation Corrections
To more quickly address critical corrections to Oracle Retail documentation content,
Oracle Retail documentation may be republished whenever a critical correction is
needed. For critical corrections, the republication of an Oracle Retail document may at
times not be attached to a numbered software release; instead, the Oracle Retail
document will simply be replaced on the Oracle Technology Network Web site, or, in
the case of Data Models, to the applicable My Oracle Support Documentation
container where they reside.

This process will prevent delays in making critical corrections available to customers.
For the customer, it means that before you begin installation, you must verify that you
have the most recent version of the Oracle Retail documentation set. Oracle Retail
documentation is available on the Oracle Technology Network at the following URL:

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html

An updated version of the applicable Oracle Retail document is indicated by Oracle
part number, as well as print date (month and year). An updated version uses the
same part number, with a higher-numbered suffix. For example, part number
E123456-02 is an updated version of a document with part number E123456-01.

If a more recent version of a document is available, that version supersedes all
previous versions.

Oracle Retail Documentation on the Oracle Technology Network
Oracle Retail product documentation is available on the following web site:

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html

(Data Model documents are not available through Oracle Technology Network. You
can obtain these documents through My Oracle Support.)

Conventions
The following text conventions are used in this document:

Convention Meaning

Navigate: This is a navigate statement. It tells you how to get to the start of the
procedure and ends with a screen shot of the starting point and the
statement "the Window Name window opens.".

Note: This information is provided to improve your understanding, simplify
a task, or point out special circumstances.

Important: This information is important for the user to be aware of. For example,
information that can help prevent the loss of data.

code This is a code sample. It is used to display examples of
code.

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html
http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html

1

Introduction 1-1

1Introduction

Oracle Retail Job Orchestrator and Scheduler (JOS) is a generic tool that manages,
executes, orchestrates, and schedules batch jobs for an enterprise, addressing the
dependencies between tasks and processing non-interactive long-running jobs.

Standards and Specifications
JOS is designed and built on industry standard nonproprietary Java EE 7 and Java
Batch (JSR 352).

Java Platform Enterprise Edition (Java EE)
Java Platform Enterprise Edition (Java EE) is an umbrella standard for Java's enterprise
computing facilities. It bundles together technologies for a complete enterprise-class
server-side development and deployment platform in Java.

Java EE specifications includes several other API specifications, such as JDBC, RMI,
Transaction, JMS, Web Services, XML, Persistence, mail, and others and defines how to
coordinate among them. The Java EE specifications also features some specifications
unique to enterprise computing. These include Enterprise JavaBeans (EJB), servlets,
portlets, Java Server Pages (JSP), Java Server Faces (JSF) and several Web service
technologies.

A Java EE application server manages transactions, security, scalability, concurrency,
pooling, and management of the EJB/Web components that are deployed to it. This
frees the developers to concentrate more on the business logic/problems of the
components rather than spending time building scalable, robust infrastructure on
which to run.

Java Batch
JSR 352 is a Java specification for building, deploying, and running batch applications.
Batch is an industry metaphor for background bulk processing. Myriad business
processes depend on batch processing and demand powerful standards-based
facilities for enabling this essential workload type.

JSR 352 addresses three critical concerns: a batch programming model, a job
specification language, and a batch runtime. This constitutes a separation of concerns.

1. Application developers have clear, reusable interfaces for constructing batch style
applications.

2. Job writers have a powerful expression language for how to execute the steps of a
batch execution.

Java Batch Overview

1-2 Oracle Retail Job Orchestration and Scheduler Implementation Guide

3. Solution integrators have a runtime API for initiating and controlling batch
execution.

JSR 352 defines a Job Specification Language (JSL) to define batch jobs, a set of
interfaces that describes the artifacts that comprise the batch programming model to
implement batch business logic, and a batch runtime for running batch jobs, according
to a defined life cycle.

The batch runtime is a part of the Java EE 7 runtime and has full access to all other
features of the platform, including transaction management, persistence, messaging,
and more.

Java EE Server
The WebLogic server implements the Java EE specification and is the Java EE server
vendor for JOS in this release. The WebLogic server provides many additional services
beyond the standard services required by the Java EE specification.

See the WebLogic Application Server documentation for more information:

http://docs.oracle.com/middleware/12211/wls/index.html

http://www.oracle.com/technetwork/middleware/fusion-middleware/documentati
on/index.html

Java Batch Overview
Batch processing for the Java platform was introduced in Java EE 7. It provides a
programming model for batch applications and a runtime to run and manage batch
jobs. Batch processing is typically bulk oriented, non-interactive, and long running.

Figure 1–1 Batch Processing

A job encapsulates the batch process. A job contains one or more steps. A job is put
together using the Job Specification Language (JSL) that specifies the sequence in
which steps must be executed.

■ A step contains all the necessary logic and data to perform the actual processing. A
chunk-style step contains ItemReader, ItemProcessor, and ItemWriter.

■ The Job Operator provides an interface to manage all aspects of job processing.

■ The Job Repository holds information about jobs currently running and jobs that
ran in the past.

http://docs.oracle.com/middleware/12211/wls/index.html

2

JOS Components 2-1

2JOS Components

The JOS components include the following:

■ Scheduler – A generic GUI tool used to define and manage time-based scheduling
work.

■ Process Flow – Defines the workflow by connecting and orchestrating multiple
executable tasks. Provides an engine to execute the workflows.

■ Job Admin – A robust task execution engine based on standard JavaBatch (JSR352)
technology. Provides a GUI to manage and monitor jobs.

JOS Architecture

Figure 2–1 Job Orchestration and Scheduling (JOS) Architecture

JOS Architecture

2-2 Oracle Retail Job Orchestration and Scheduler Implementation Guide

3

Job Admin 3-1

3Job Admin

This chapter describes the Job Admin functionality.

Job Admin Concepts
Here is a list of the Job Admin features.

■ Provides management and monitoring of batch jobs.

■ Services available to start/restart/monitor jobs programmatically.

■ Monitors executions and logs.

■ Built on JavaEE JSR352 JavaBatch standard and available on WebLogic.

■ GUI to manage/start/restart batch jobs.

■ JavaBatch Runtime Engine to execute job.xml files.

Job Admin Components
The following section includes information about the Job Admin components.

RESTFul Services
This section describes the RESTFul services.

Batch Service
The Batch service is a RESTful service that provides various endpoints to manage
batch jobs. Here are the key endpoints in the Batch Service.

Start Job
This endpoint starts a job asynchronously based on a job name and returns the
execution ID of the job in the response.

Path: /batch/jobs/<jobName>

HTTP Method: POST

Inputs:

Job Name as path parameter

Job Parameters is a query parameter. Job Parameters is a comma separated list of name
value pairs. This is optional.

Sample Request

Job Admin Components

3-2 Oracle Retail Job Orchestration and Scheduler Implementation Guide

http://localhost:7001/jos-batch-job-admin/resources/batch/jobs/ShellComman
dRunnerJob?jobParameters=key=value

Successful Response

Figure 3–1 Start Job Successful/Error Responses

Restart Job
This endpoint restarts a job asynchronously using the job execution ID and returns the
new job execution ID.

Path: /batch/jobs/executions/{executionId}

HTTP Method: POST

Inputs: executionId as path parameter

Sample Request

http://localhost:7001/jos-batch-job-admin/resources/batch/jobs/executions/
2

Job Admin Components

Job Admin 3-3

Figure 3–2 Start Job Successful/Error Responses

Inputs
jobName as path parameter

jobExecutionId as path parameter

Sample Request

http://localhost:7001/jos-batch-job-admin/resources/batch/jobs/ShellComman
dRunnerJob/1

Job Admin Components

3-4 Oracle Retail Job Orchestration and Scheduler Implementation Guide

Figure 3–3 Inputs Successful/Error Responses

System Setting Service
See Appendix D for details about System Setting Service.

Job Metrics Service
Job Metrics service provides an end point that produces metrics for jobs based on time
range.

Path: /telemetry/jobs

HTTP Method: GET

Inputs: fromTime as query parameter

toTime as a query parameter

Sample Response

{

Job Admin Components

Job Admin 3-5

 "data-requested-at": "2017-10-09T10:49:57.208-06:00",
 "data-requested-from-time": "2017-10-08T10:49:57.197-06:00",
 "data-requested-to-time": "2017-10-09T10:49:57.197-06:00",
 "jobs-server-runtime-info": {
 "id": "bdi-rms-batch-job-admin.war",
 "app-type": "BDI",
 "app-status": "RUNNING",
 "up-since": 1642,
 "total-jobs-count": 1,
 "total-executions-count": 4,
 "successful-executions-count": 0,
 "failed-executions-count": 4,
 "job": [
 {
 "name": "ShellCommandRunnerBatchlet",
 "slowest-run-duration": 0,
 "fastest-run-duration": 0,
 "avg-run-duration": 0,
 "executions": {
 "execution_count": 4,
 "success_count": 0,
 "failure_count": 4,
 "execution": [
 {
 "execution-id": 121,
 "instance_id": 121,
 "status": "FAILED",
 "startTime": "2017-10-09T10:06:43-06:00",
 "endTime": "2017-10-09T10:06:43-06:00",
 "step": [
 {
 "step-execution-id": 121,
 "name": "shellCmd",
 "duration": 0,
 "status": "FAILED"
 }
]
 },
 {
 "execution-id": 122,
 "instance_id": 122,
 "status": "FAILED",
 "startTime": "2017-10-09T10:07:36-06:00",
 "endTime": "2017-10-09T10:07:36-06:00",
 "step": [
 {
 "step-execution-id": 122,
 "name": "shellCmd",
 "duration": 0,
 "status": "FAILED"
 }
]
 },
 {
 "execution-id": 123,
 "instance_id": 123,
 "status": "FAILED",
 "startTime": "2017-10-09T10:08:20-06:00",
 "endTime": "2017-10-09T10:08:20-06:00",
 "step": [

Job Admin Components

3-6 Oracle Retail Job Orchestration and Scheduler Implementation Guide

 {
 "step-execution-id": 123,
 "name": "shellCmd",
 "duration": 0,
 "status": "FAILED"
 }
]
 },
 {
 "execution-id": 124,
 "instance_id": 124,
 "status": "FAILED",
 "startTime": "2017-10-09T10:13:20-06:00",
 "endTime": "2017-10-09T10:13:20-06:00",
 "step": [
 {
 "step-execution-id": 124,
 "name": "shellCmd",
 "duration": 0,
 "status": "FAILED"
 }
]
 }
]
 }
 }
]
 }
}

Job Admin UI
The Job Admin UI provides functionality to manage and monitor jobs. The Job Admin
UI is described in detail in Appendix G.

Best Practices
Best practices include:

■ Use Batchlet if a job must run a script or program that resides locally.

■ Use ItemReader, ItemWriter, and so on, if a job requires more control over the
processing of data. Chunk processing allows data to be processed in chunks, and,
if a job fails, it can only process the remaining chunks during a restart.

■ Use job parameters to dynamically pass parameters to a job.

■ Use PartitionMapper to specify the number of partitions and the threads for chunk
processing so that all data is processed concurrently.

Job Admin Security
Both Job Admin UI and REST Services are secured with SSL and basic authentication.
The following roles are defined to restrict access to operations in Job Admin.

■ JobAdminRole

■ JobOperatorRole

■ JobMonitorRole

Job Admin Components

Job Admin 3-7

Batch jobs can be run from the Job Admin UI or through the Batch REST service. Here
are the operations that can be performed by the users based on their roles.

Table 3–1 Job Admin Functions and Roles

Function Admin Role Operator Role Monitor Role

Edit configuration from UI Yes No No

Create/update/delete system options Yes No No

Create/update/delete system credentials Yes No No

View credentials Yes No No

Run jobs Yes Yes No

Monitor jobs Yes Yes Yes

Job Admin Customization
During the deployment of Job Admin, seed data is loaded to various tables. Seed data
files are located in the jos-<app>-home/setup-data/dml folder. If seed data is
changed, Job Admin must be reinstalled and redeployed. In order to load seed data
again during the redeployment, the LOADSEEDDATA flag in the BDI_SYSTEM_
OPTIONS table must be set to TRUE.

During the deployment, Job XMLs get loaded to BDI_JOB_DEFINITION table. Job
XML files are located in the "jos-job-home/setup-data/META-INF/batch-jobs" folder.
If job xmls are changed, Job Admin must be reinstalled and redeployed. In order to
load job xmls during redeployment, the LOADJOBDEF flag in the BDI_SYSTEM_
OPTIONS table must be set to TRUE.

Note: Restart of job does not load job definition from the BDI_JOB_
DEFINITION table. Java Batch loads job xml from JOBSTATUS table
during the restart of a job.

If there is an issue with Job XML, job needs to be started after fixing
the job XML.

Job Admin Troubleshooting
This section describes the Job Admin errors and troubleshooting.

Deployment Error
Issue: Job Admin deployment can encounter this error if the database credentials are
invalid:

Caught: javax.management.RuntimeMBeanException:
java.lang.RuntimeException:
weblogic.management.provider.EditFailedException:
java.lang.NullPointerException

javax.management.RuntimeMBeanException: java.lang.RuntimeException:
weblogic.management.provider.EditFailedException:
java.lang.NullPointerException

at weblogic.utils.StackTraceDisabled.unknownMethod()

Job Admin Components

3-8 Oracle Retail Job Orchestration and Scheduler Implementation Guide

Caused by: java.lang.RuntimeException:
weblogic.management.provider.EditFailedException:
java.lang.NullPointerException

1 more

Caused by: weblogic.management.provider.EditFailedException:

java.lang.NullPointerException

1 more

Caused by: java.lang.NullPointerException

1 more

Solution:

Undo all changes in the WebLogic domain session. Redeploy the application, setting
up new credentials and verifying that the deployment has been successful.

Runtime WSMException
Issue: Log files contain this exception:

oracle.wsm.common.sdk.WSMException: WSM-07620 : Agent cannot enforce policies
due to either failure in retrieving policies or error in validations, detail= "WSM-02557
The documents required to configure the Oracle Web Services Manager runtime have
not been retrieved from the Policy Manager application (wsm-pm), possibly because
the application is not running or has not been deployed in the environment. The query
"&(@appliesTo~="REST-CLIENT()")(policysets:global:%)" is queued for later retrieval.

Solution: Follow the BDI Installation guide and verify that the WSM- policy manager
is configured for the admin server URL.

Open the WebLogic domain console and target the wsm-pm application to Admin
Server. Bounce Admin server and verify that the wsm-pm application is in an active
state.

Job Fails and Job Admin Log Files Contain No Details of the Failure
Issue: A job fails and the Job Admin log files contain no evidence of or details about
the failure.

Solution: Examine the WebLogic server log files to identify the root cause of the job
failure. A possible root cause is the improper data source configuration.

Job Admin UI Throwing Error: Job XML Not Found
Issue: Log files contain this exception:

Caused By: javax.ejb.EJBException: EJB Exception: : java.lang.RuntimeException:
Could not find jobName(ShellCommandRunnerBatchlet) xml file. You may have
renamed the job file or your job repository has more jobs than your application. To
resolve the issue either delete the job repository or add the correct job xml file to the
app.

Solution: The job has been deleted from the jos-job-home before redeployment. Either
add the missing job XML or delete the execution records of the job from the batch
database.

Job Admin UI Throwing Error: Table or View Doesn't Exists
Issue: Log files contain this exception:

Job Admin Components

Job Admin 3-9

<Error> <javax.enterprise.resource.webcontainer.jsf.application> <BEA-000000>
<Error Rendering View[/index.xhtml] javax.el.ELException: /index.xhtml @15,84
value="#{batchSummaryRequestBean.refreshPage}": javax.ejb.EJBException: EJB
Exception: : com.ibm.jbatch.container.exception.PersistenceException:
java.sql.SQLSyntaxErrorException: ORA-00942: table or view does not exist

Solution: BatchInfrastructure database is not pointing to a valid schema. Check if the
schema has the following tables: CHECKPOINTDATA,
STEPEXECUTIONINSTANCEDATA, STEPSTATUS, EXECUTIONINSTANCEDATA,
JOBINSTANCEDATA, JOBSTATUS. If not, then run the DDL:

$Oracle_Home/oracle_common/common/sql/wlsservices/batch/oracle/jbatch.sql

IO Exception or Permissions Issue On Running A Shell Runner Job
Issue: java.io.IOException: Cannot run program "./TestShell1.sh" (in directory
"/u00/webadmin/16.1.0/Scripts"): error=13, Permission denied

Solution: Check if the script the job is running is present in the specified location or
not.

Check if the required permissions are provided for running the script.

Missing Credentials Access Permission
Issue: Caused by: java.lang.RuntimeException: Cannot get the Credential Map with
the specified appLevelKeyPartitionName(DEFAULT_KEY_PARTITION_NAME).at
com.oracle.retail.integration.common.security.credential.CredentialStoreManager.getA
llUserNameAliases(CredentialStoreManager.java:1171)
~[retail-public-security-api-16.1.0.jar:?]Caused by:
java.security.AccessControlException: access denied
("oracle.security.jps.service.credstore.CredentialAccessPermission"
"context=SYSTEM,mapName=DEFAULT_KEY_PARTITION_NAME,keyName=*"
"read")

Solution: Verify weblogic.policy file. The credential access permissions should be
added for the domain where the applications are deployed. Add the permissions and
restart the Admin and managed server.

Missing System Credentials
Issue: Caused by: java.lang.IllegalArgumentException:
alias(processCallBackServiceUrlUserAlias) not found in the credential store.

Solution: Add the system credentials using the UI or REST service.

Missing System Options
Issue: 2017-03-31T02:49:42,628 [Thread-132] DEBUG Logger$debug - Starting job:
null/resources/batch/jobs/DiffGrp_Fnd_ExtractorJob 2017-03-31T02:49:42,658
[Thread-132] ERROR Logger$error$0 - Error calling activity.
java.lang.NullPointerException: Cannot invoke method getBytes() on null object

Solution: Add the system options using the UI or ReST service.

Job Admin Components

3-10 Oracle Retail Job Orchestration and Scheduler Implementation Guide

4

JOS Process Flow 4-1

4JOS Process Flow

A process flow is a composition of one or more activities. It is written in a DSL script
that contains all the activities that make up a process from start to finish.

Process Flow
A process flow encapsulates a sequence of activities. An activity can be synchronous or
asynchronous. In JOS, some of these activities may be invocations of batch jobs.

Figure 4–1 Process Flow

Process Flow Concepts
This section includes the following:

Process Flow Concepts

4-2 Oracle Retail Job Orchestration and Scheduler Implementation Guide

■ DSL (Domain Specific Language)

■ Process Variables

DSL (Domain Specific Language)
Process flow definition is specified in a Domain Specific Language (DSL) built on the
top of Groovy. Since Groovy is build on the top of Java Virtual Machine (JVM), Groovy
can understand Java and Groovy language constructs. So the process flow DSL can
understand the DSL, Groovy, and Java language constructs.

A process is a list of activities. The keywords "begin", "end" and "activity" are the main
DSL keywords used in process flow definition. These are described in detail below.

Begin Activity
The begin activity in the process flow definition appears as the first activity. There
should be only one begin activity. This activity is intended to be the one used for any
initialization needed for the process flow.

Activity
Activity has two parts, name and action. The name attribute is mandatory and should
be used to give a unique name for the activity.

Action section is where the executable code should reside. Any Groovy or Java code
can be coded in this section.

There can be one or more activities in a process.

End Activity
The end activity in process flow definition appears as the last activity. There should be
only one end activity. This activity is intended to be the one used for any finalization
needed for the process flow.

Process Variables
Variables used between activities can be created and stored in the processVariables
map. The process engine also uses some of the variables for its own working in the
process variable map. These variables are prefixed with "bdi_internal_". These
variables must not be modified inside the DSL code.

Here is how you can use the process variable map for your own use.

// Set Variable

processVariables["VariableName"] = "Some Value"

// Use a variable value

def anotherVariable = processVariables["VariableName"]

External Variables
Some of the system level configuration values are available in the externalVariables
map. These values are read-only. The process flow DSL can use these values, but
should not attempt to change it.

For example:

externalVariables["rxmJobAdminBaseUrlUserAlias"]

Process Flow DSL

JOS Process Flow 4-3

Process Flow DSL
This section includes the following:

■ Process Flow DSL Characteristics

■ DSL Keywords

■ Process Flow API

■ Process Flow Variables

Process Flow DSL Characteristics
The section describes the characteristics of the process flow DSL.

■ Every process flow must have a name. The process flow name must match the
filename that the process flow is saved into.

■ Process flows are written in DSL and saved as .flo files.

■ Process flow is made up of two special activities called "begin" and "end" and a
group of user-defined activity nodes.

■ The begin and end activities will always run.

– User-defined activity may or may not run based on SKIP or moveTo logic.

– Every user-defined activity must have a unique name within a process flow.

– The activity names are used to transfer control from one activity to another.
Jumping to an activity is possible using the moveTo function.

– Every activity has an action block that does the real work. Small amounts of
Groovy/Java code can be put inside the action block.

– Local variables can be defined within the action block.

– Process variables are defined on top and are accessible to all activities within
the process.

– There are few implicit variables such as $activityName and $name.

– Errors can be thrown using the error <some message> function.

– Built-in conditional branching, looping, error handling.

– Predefined functions for common tasks to reduce boilerplate code.

– Built in REST service DSL can call service with just one line.

– Services available to start/restart/monitor process flows programmatically.

– Can handle chaining of process flows.

– Service credential management framework built in.

– Hybrid Cloud ready.

– Built in activity SKIP functionality.

– Built in activity HOLD and RELEASE functionality.

– Built in bulk skip and Hold functionality.

– Built in SPLIT and JOIN functionality between process flows.

* SPLIT - one to many

* JOIN - many to one

Process Flow DSL

4-4 Oracle Retail Job Orchestration and Scheduler Implementation Guide

DSL Keywords
The tables below describe the following:

■ DSL Keywords

■ DSL Blacklisted Keywords

■ Process Flow API

■ Process Flow Variables

Table 4–1 DSL Keyword Descriptions

DSL Keywords Description

process Identifies the process flow. Only one keyword in a process flow.

name Used for naming processes and activities.

var Used for initializing process variables.

begin Begin activity block is the first activity in the DSL. It is
mandatory and can be used for initialization.

activity The executable component of the process flow. A process flow is
composed of many activities.

action Action section is where the executable code should reside. Any
Groovy or Java code can be coded in this section.

on "okay" moveTo Use these keywords inside an activity to move to another
activity.

on "error" moveTo Use these keywords inside an activity to move to error activity.

end "end" activity in process flow definition appears as the last
activity. There should be only one "end " activity.

DSL Blacklisted Keywords – In the process definition, changes can be made in DSL
(Domain Specific Language), Groovy, or Java. Since this file is essentially a program, it
can be modified to cause damages (e.g., delete files from the system). We have
introduced a list of keywords that are potentially dangerous to use. If a blacklist word
is present in the DSL, application deployment will fail and an error will be written to
the server log (examples - java, groovy, thread etc.)

Table 4–2 Process Flow API Descriptions

DSL API Usage Description

triggerProcess(def
baseUrl, String
processDslName, String
credentials, String
processParameters)

triggerProcess(externalVariables["u
rl"], "ProcessABC",
externalVariables["urlUserAlias"],
"a=b,c=d")

Method to start a process
from DSL. This method
sends a POST request to
Process Flow to start a
process. It returns process

startOrRestartJob(def
baseUrl, String jobName,
String credentials)

startOrRestartJob(externalVariable
s["url"],"JobAbc",
externalVariables["urlUserAlias"])

Method to start or restart a
job in Job Admin. This
method sends a POST
request to a REST end
point in Job Admin.

Process Flow DSL

JOS Process Flow 4-5

waitForJobCompletedOrF
ailed(def targetActivity,
def url, String credentials,
int waitMinutes=1)

waitForJobCompletedOrFailed("Jo
bAbcActivity",externalVariables["u
rl"] +
"/resources/batch/jobs/JobAbc/"
+
processVariables["jobExecutionId"]
, externalVariables["urlUserAlias"])

Method to wait for job to
be completed or to fail.
This method checks the
status of the job and waits
until status is
COMPLETED or FAILED.

waitForProcessInstancesTo
ReachStatus(def
processInstanceList, def
targetStatus=PROCESS_
COMPLETED, def
logicalAndOrOr =
LOGICAL_AND, int
waitMinutes=1)

waitForProcessInstancesToReachSt
atus(["P~1", "Q~1"], PROCESS_
COMPLETED, LOGICAL_OR)

Method to wait for other
process instances to reach
a status.

waitForProcessNamesToR
eachStatus(Map,
processNameToNumberOf
ExecutionsAfterStartMark
erTime, LocalDateTime
startMarkerTime, def
targetStatus = PROCESS_
COMPLETED, def
logicalAndOrOr =
LOGICAL_AND, def
whichExecutionStatus =
LAST_EXECUTION_
STATUS, int waitMinutes
= 1)

waitForProcessNamesToReachStat
us([P:3, Q:3, R:3],
now().minusDays(1), PROCESS_
COMPLETED, LOGICAL_AND,
LAST_EXECUTION_STATUS)

Method to wait for
processes with names to
reach a status.

persistGlobalUserData(Str
ing key, String value)

persistGlobalUserData("key",
"value")

Method to persist data to
be shared with other
processes. Persists key
value pairs in BDI_
SYSTEM_OPTIONS table.

String
findGlobalUserData(Strin
g key)

findGlobalUserData("key") Gets value from BDI_
SYSTEM_OPTIONS table
for a given key.

Map
findAllGlobalUserData(Str
ing key)

findAllGlobalUserData() Returns a Map with all
user data.

removeGlobalUserData(St
ring key)

removeGlobalUserData("key") Removes data for given
key.

error error "report my error" Generate an error
condition and jump to the
end activity. Process will
be marked as failed.

Table 4–2 (Cont.) Process Flow API Descriptions

DSL API Usage Description

Process Flow DSL

4-6 Oracle Retail Job Orchestration and Scheduler Implementation Guide

POST POST[externalVariables.url]^exter
nalVariables.urlUserAlias

def response =
(POST[externalVariables.url] +
customHttpHeaders &
MediaType.APPLICATION_
JSON_TYPE ^ BasicAuth.alias1 |
MediaType.APPLICATION_
JSON_TYPE) << {} as String

Method to make a POST
call to a url.

externalVariables.url -
URL system option key
configured in System
Options table

customHttpHeaders -
[a:"b", c:"d"]

Use "+" to provide custom
http headers

Use "&" to provide
response media type

Use "^" to provide basic
authentication alias. User
name and password will
be Base64 encoded by the
API.

Use "|" to provide entity
media type

Use "<<" to post data. The
data will be in the format
provided in entity media
type.

GET GET[externalVariables.url]^extern
alVariables.urlUserAlias

def response =
(GET[externalVariables.url] +
customHttpHeaders &
MediaType.APPLICATION_
JSON_TYPE ^ BasicAuth.alias1) as
String

Method to make a GET
call to a URL.

externalVariables.url -
URL system option key
configured in System
Options table

customHttpHeaders -
[a:"b", c:"d"]

Use "+" to provide custom
http headers

Use "&" to provide
response media type

Use "^" to provide basic
authentication alias. User
name and password will
be Base64 encoded by the
API

Table 4–2 (Cont.) Process Flow API Descriptions

DSL API Usage Description

Process Flow DSL

JOS Process Flow 4-7

DELETE DELETE[externalVariables.url]^ext
ernalVariables.urlUserAlias

def response =
(DELETE[externalVariables.url] +
customHttpHeaders &
MediaType.APPLICATION_
JSON_TYPE ^ BasicAuth.alias1)
<< {} as String

Method to make a
DELETE call to a URL.

externalVariables.url -
URL system option key
configured in System
Options table

customHttpHeaders -
[a:"b", c:"d"]

Use "+" to provide custom
http headers

Use "&" to provide
response media type

Use "^" to provide basic
authentication alias. User
name and password will
be Base64 encoded by the
API

log.info

log.debug

log.error

log.debug "Activity Name:
$activityName"

Adds information to log
file.

Table 4–3 Process Flow Variables

Variables
Implicit or
Explicit Usage Examples Description

externalVariables Implicit def myVar =
externalVariables['myKe
y']

These are global variables
that apply to all process
flows. It comes from System
Options table. Installation
specific key values will be
here.

processVariables Implicit var(["myVar1":"prq",
"myVar2":"xyz",
"myVar3":"mno"])

//get value

def aVar =
processVariables['myVar
1']

//put new value

processVariables['myVar
2'] = "abc"

These are process level
variables that can be shared
by all activities. Process
variables are automatically
persisted. Restart of a
process recovers the process
variables to the right value
where it left off in the
previous run. These are the
most common variables you
should use. Process
variables must be declared
using the var key word.

Table 4–2 (Cont.) Process Flow API Descriptions

DSL API Usage Description

Process Flow Instrumentation

4-8 Oracle Retail Job Orchestration and Scheduler Implementation Guide

Process Flow Instrumentation
When the process engine executes the process flow, the before and after snapshots of
the activity are recorded in the process schema.

The information is reported through the Process Flow Admin application. Process
Flow Admin is a web application that provides a GUI to manage task workflows. This
is useful for tracking the process flows as well as troubleshooting. The snapshots also
help when restarting a failed process. From the schema, the process engine can
recreate the context to execute a restart and can resume execution from the activity that
failed in the previous run.

Sub-Processes
One process may invoke one or more processes asynchronously. All the processes may
run at the same time.

In order to identify these sub-processes, they are named accordingly. Once invoked,
the main process has no control over the sub-processes. Each of the processes will run
in the same way, as they are invoked independently.

Local variables Explicit action{

 def a = "xyz"

 def i = 7

 i++

}

Any variables can be
created with the action
block and used as local
variables. Local variables
defined in one activity is not
accessible in another
activity.

Global external
variables

Explicit persistGlobalUserData("
key1", "value1")

def xyz =
findGlobalUserData("key
1")

removeGlobalUserData("
key1")

For inter process dynamic
variable sharing one can
persist new variable to DB.

activityName Implicit println "My activity is
${activityName}"

Current activity name.

name Implicit Println "My process
name is ${processName}"

Current process name.

processExecutionId Implicit Println "Current process
execution Id is
${processExecutionId}"

Current process execution
Id

Table 4–3 (Cont.) Process Flow Variables

Variables
Implicit or
Explicit Usage Examples Description

Statuses

JOS Process Flow 4-9

Process Schema
The process instrumentation captures the state of the process at the beginning and end
of each activity. This information is persisted into the process schema. For each activity
there will be two records, one for before the activity and the other for after the activity.

Table 4–4 Process Schema Table Descriptions

Table Name Description

BDI_PROCESS_DEFINITION This table stores all the process flow definitions. It is
loaded at deployment time.

BDI_PROCESS_EXEC_INSTANCE This table tracks all the process flow executions.
There is a row for each process flow execution.

BDI_ACTIVITY_EXEC_INSTANCE This table tracks all the activity executions. There
are two rows for each activity execution. One to
store the before context, and one to store after
context

BDI_ACTIVITY_DYNAMIC_CONFIG This table stores the user runtime choices like SKIP,
HOLD, and so on, at the activity level

BDI_SYSTEM_OPTIONS This table has all the system level information like
URLs, credential aliases, and so on.

BDI_EXTERNAL_VARIABLE This table does temporary storage of variables
during process execution.

BDI_PROCESS_CALL_STACK This table stores call stack for processes

Process Restart
When the activities within a process flow fails, the process status is marked as failed. A
failed (or stopped) process flow can be restarted. If there are multiple failed processes,
only the latest failed instance can be restarted.

Note: The restart is for an instance that has already run and failed.
This is different from running a new instance of the process flow.

When a process flow is restarted, the system knows the activity that failed (or stopped)
in the previous run. During the restart, the process engine will skip all the activities
prior to the failed activity. It will restore the context for the activity and resume
execution at the failed activity.

Process flow execution does not keep the activity history at the restart. It will
overwrite the activity records upon restart.

Statuses
Each activity instance and the process instance maintain the status of execution in the
process schema. Following are the possible values for Activities and Process.

At the begin activity, the process is marked as PROCESS_STARTED. If any activity
fails, the process is marked as PROCESS_FAILED. After the end action is completed,
the process is marked PROCESS_COMPLETED. A complete list of process flow
statuses includes:

■ PROCESS_STARTED

■ PROCESS_FAILED

Implementing a JOS Flow

4-10 Oracle Retail Job Orchestration and Scheduler Implementation Guide

■ PROCESS_COMPLETED

■ PROCESS_STOPPING

■ PROCESS_STOPPED

Similar to process statuses, each activity has also a status. The values include:

■ ACTIVITY_STARTED

■ ACTIVITY_FAILED

■ ACTIVITY_COMPLETED

■ ACTIVITY_WAITING_DUE_TO_HOLD_STARTED

■ ACTIVITY_WAITING_DUE_TO_HOLD_COMPLETED

■ ACTIVITY_WAITING_DUE_TO_JOIN_STARTED

■ ACTIVITY_WAITING_DUE_TO_JOIN_COMPLETED

■ ACTIVITY_SKIPPED

■ ACTIVITY_STOPPING

All the runtime statuses are persisted in the process schema at runtime when the DSL
is executed.

Implementing a JOS Flow
The following steps show how to implement a JOS Flow.

1. Download JosProcessFlow<version>ForAll16.x.xApps_eng_ga.zip and unzip the
file.

2. Create a process flow DSL file that stitches the jobs. DSL is Groovy based and
Groovy or Java code can be used with in action block. See the following sample of
DSL.

3. Copy the DSL files to jos-process-home/setup-data/dsl/flows-in-scope folder.

4. Run the deployer script in the jos-process-home/bin folder to deploy the JOS
Process flow.

Activity Features
This section includes the following activity features:

■ Skip Activity

■ REST Endpoint to Set the Skip Activity Flag

■ Hold/Release Activity

■ REST Endpoint to Set the Hold Activity Flag

■ Bulk Skip/Hold

■ Callback Service

■ How to Start Process Flow with Input Parameters

■ Call Back from the Process Flow

■ How to Invoke the Callback Service Declaratively

■ Process Flow Did Not Start

Activity Features

JOS Process Flow 4-11

■ Deleted Process Flow Still Listed in the UI

Skip Activity
Activities in a process flow can be skipped by setting the skip activity flag through the
Process Flow Configurations screen or REST endpoint. The skip flag can be set to
expire, based on date and time. If the expiration date is not provided, then that activity
will be skipped until the skip flag is removed. When an activity is set to skip, the
process flow engine skips that activity and runs the next activity in the flow.

Figure 4–2 Process Flow Configurations Screen

REST Endpoint to Set the Skip Activity Flag
/batch/processes/<processName>/activities/<activityName>?skip=true

Hold/Release Activity
Activities in a process flow can be paused by setting the hold activity flag through the
Process Flow Configurations screen or REST endpoint. The hold flag can be set to
expire, based on date and time. If the expiration date is not provided, then that activity
will be paused until the hold flag is removed. When an activity is set to hold, the
process flow engine waits on that activity until the hold flag is removed or the time
has expired.

REST Endpoint to Set the Hold Activity Flag
/batch/processes/<processName>/activities/<activityName>?hold=true

Bulk Skip/Hold
Bulk skip or hold allows you to set a skip and/or hold flag for a list of activities in
multiple process flows.

Note: Verify the updates in the BDI_ACTIVITY_DYNAMIC_
CONFIG table.

REST Endpoint: /batch/processes/skip-or-hold
POST Data:
{"processActivities": [
{"processName" : "…",
 "activityName": "…",
 "skip" : true, false if not specified
 "hold" : false, false if not specified
 "actionExpiryDate" : "optional",
 "comments" : "optional"
},
{…}
]
}

Activity Features

4-12 Oracle Retail Job Orchestration and Scheduler Implementation Guide

Curl Command to Set Bulk Skip/Hold
curl -i --user processadmin:processadmin1 -X POST -H
"Content-Type:application/json"
http://host:port/bdi-process-flow/resources/batch/processes/skip-or-hold -d
'{"processActivities": [
{"processName" : "OrgHier_Fnd_ProcessFlow_From_RMS", "activityName": "OrgHier_Fnd_
ExtractorActivity", "skip":true},
{"processName" : "DiffGrp_Fnd_ProcessFlow_From_RMS", "activityName": "Activity1",
"skip":true}
,{"processName" : "DiffGrp_Fnd_ProcessFlow_From_RMS", "activityName": "Activity2",
"skip":true}
]
}'

Output
{"processActivities":[{"actionResult":"OK","activityName":"OrgHier_Fnd_
ExtractorActivity","processName":"OrgHier_Fnd_ProcessFlow_From_
RMS"},{"actionResult":"OK","activityName":"Activity1","processName":"DiffGrp_Fnd_
ProcessFlow_From_
RMS"},{"actionResult":"OK","activityName":"Activity2","processName":"DiffGrp_Fnd_
ProcessFlow_From_RMS"}],"netResponse":"SUCCESS"}

Callback Service
The Process Flow engine can be configured to call a rest service at each activity. This is
useful if the process flow is invoked by an external system (typically a workflow
system) and the system wants to be informed of the progress of each activity. This
callback can be configured declaratively or programmatically as needed.

The external system will have to implement the CallBack Service that will allow it to
receive information from the JOS process flow. The external system can call the process
flow, passing the context information as process flow parameters. The process flow
will pass the information back when it makes the CallBack Service call.

How to Start Process Flow with Input Parameters
To start a JOS process flow, the user must a REST service call to the URL

Activity Features

JOS Process Flow 4-13

(http://<host>:<port>/bdi-process-flow/resources/batch/processes/operator/<proc
essName>).

The call must be a POST call to the URL.

The process flow start call accepts HTTP query parameters. The format of the query
parameters are as follows:

http://localhost:7001/bdi-process-flow/resources/batch/processes/<ProcessName>?
processParameters=callerId=<value1>,correlationId=<value2>,callBackServiceDataDe
tail.<name1>=<value3>,callBackServiceDataDetail.<name2>=<value4>

Spaces are not allowed in query parameters and must be separated by commas.

For example:

http://localhost:7001/bdi-process-flow/resources/batch/processes/Abc_
Process?processParameters=callerId=123,correlationId=abc,callBackServiceDataDetail.
def=xyz,callBackServiceDataDetail.abc=123

The following is the context information that must be passed to the JOS process flow
from the calling system.

1. callerId - CallerId parameter is used to identify the invoker of process flow. In this
case it is CAWA.

2. correlationId - Correlation ID is the main identifier used by the calling system
(CAWA) to tie the process flow Start call to the eventual CallBack Service call.

3. callBackServiceDataDetail - <name>= These are additional key value pairs that
may be required in the future as required by the caller.

All of the above parameters are optional. However, if the context is not passed, the
caller may not be able to associate the invocation with the callback.

Call Back from the Process Flow
A method (invokeCallBackService) is available for the Process Flow DSL that will
allow the process flow to call an external service. This service has following features:

■ The method internally invokes a REST call to the provided URL.

■ The method uses basic authentication for the rest call. The credentials for the
method call must be available in the process flow.

■ The payload sent from process flow to the invoking application (CAWA) follows
the contract as shown in the example in the next section. All of the values, other
than keyValueEntryVo, are populated by the Process Flow engine. The DSL writer
can modify the keyValueEntryVo before the callback to pass any custom values
from the DSL to invoking application (CAWA).

■ The result of the callback REST service (in CAWA) must be a String value.

■ If the callback service invocation fails for any reason (such as a network issue), the
process flow activity fails and the process flow is marked as failed.

How to Invoke the Callback Service Declaratively
Set up the callback URL in process flow system options. To configure a callback URL,
you should add system options such as <serviceName>CallBackServiceUrl, for
example, processCallBackServiceUrl.

1. In the Process Flow Admin console, navigate to the Manage Configurations tab
and the System Options sub-tab.

Activity Features

4-14 Oracle Retail Job Orchestration and Scheduler Implementation Guide

Figure 4–3 Process Flow Admin Console Manage Configurations Tab

2. Scroll down to Create New System Options and enter System Option Name and
System Option Value. The URL must be a valid ReST Service.

Figure 4–4 Create New Systems Options Section

3. Click Save.

Activity Features

JOS Process Flow 4-15

Figure 4–5 Saved System Options

4. Set up the callback URL credential alias in the process flow. To add the callback
URL credential alias, you must add credential alias such as
<serviceName>CallBackServiceUrlUserAlias, for example,
processCallBackServiceUrlUserAlias.

5. In the Create New System Options section, select the Create Credentials check
box.

Figure 4–6 Create Credentials Check Box

6. Enter System Option Name, Username, and Password for the URL provided in
the previous step. If the system option name for the URL is
processCallBackServiceUrl, then the system option name for the credential must
be processCallBackServiceUrlUserAlias.

Activity Features

4-16 Oracle Retail Job Orchestration and Scheduler Implementation Guide

Figure 4–7 Entering URL Credentials

7. Click Save.

Figure 4–8 System Option Name

Note: Credentials created through the UI are available after a server
restart; however, after the redeployment of the application, the
credentials must be created again.

8. Navigate to the Manage Process Flow tab and select process flow, then go to
Process Flow Configurations sub-tab.

9. Select Callback check box for the activities you want callback to be enabled for.
Select Callback URL from the drop-down list.

Activity Features

JOS Process Flow 4-17

Figure 4–9 Configuring Callback Activities

10. Click Save.

Figure 4–10 Saved Callback Service URL

How to Invoke the Callback Service Programmatically
From the Process Flow DSL activity, you can invoke the callback service, as shown in
the examples below. The callBackServiceUrl and callBackServiceUrlUserAlias
properties must be set up in the System Options inside process flow.

Example 1: Short Form
Add the following line inside the JOS process flow activity.

def retValue = invokeCallBackService(externalVariables.callBackServiceUrl,
externalVariables.callBackServiceUrlUserAlias)

Activity Features

4-18 Oracle Retail Job Orchestration and Scheduler Implementation Guide

Example 2: Long Form
In the long form API, the callBackServiceData is an implicit parameter that is
automatically defined, and the user can update it with additional data inside an
activity if necessary.

Add the following line inside the JOS process flow activity.

 //optionally update some data

 callBackServiceData.keyValueEntryVo[0].key = "Some Key"

 callBackServiceData.keyValueEntryVo[0].value = "Some Value"

 def retValue =

 invokeCallBackService(externalVariables.callBackServiceUrl,
externalVariables.callBackServiceUrlUserAlias, callBackServiceData)

Callback Request Payload Structure
The JOS process flow will make a POST REST call to the callBackService URL, passing
in the following payload. JSON is the default content type.

Figure 4–11 JSON Payload Contract

Figure 4–12 XML Payload Contract

Table 4–5 Call Back Service Scenarios

Activity Type
Activity
Action Callback Behavior

Activity Status
Sent by
Callback

Activity Status if
Callback Fails

Any None Callback will be
called after action
part is complete.

ACTIVITY_
COMPLETE or
ACTIVITY_FAILED
according to the
action part
success or failure.

ACTIVITY_FAILED

Skip Callback will be
called after action
part is complete.

ACTIVITY_
SKIPPED

ACTIVITY_FAILED

Hold Callback will be
called when hold is
released and after the
action part of the
activity runs.

ACTIVITY_
COMPLETE or
ACTIVITY_FAILED
according to the
action part
success or failure.

ACTIVITY_FAILED

Special Cases

startOrRestartJob
Activity

None Callback will be
called as soon as the
job start or restart call
is complete.

ACTIVITY_
COMPLETE if the
job was started or
restarted
successfully.
ACTIVITY_FAILED
if the job was not
started or
restarted
successfully.

ACTIVITY_FAILED

waitForJobComp
letedOrFailed

None Callback will be
called after the Job
status has reached
complete or failed.

ACTIVITY_
COMPLETE if the
job was started or
restarted
successfully.
ACTIVITY_FAILED
the job failed.

ACTIVITY_FAILED

Restart Scenarios

startOrRestartJob
Activity

None Job will be started or
restarted only if the
Job was not started
earlier or job failed. If
the activity failed due
to callback failure the
job will not be started.

ACTIVITY_
COMPLETE if the
job was started or
restarted
successfully.
ACTIVITY_FAILED
if the job was not
started or
restarted
successfully.

ACTIVITY_FAILED

waitForJobComp
letedOrFailed

None Callback will be
called after checking
the Job status, if it has
reached complete or
failed, otherwise
process will wait for
the job to reach
complete or failed
status.

ACTIVITY_
COMPLETE if the
job was started or
restarted
successfully.
ACTIVITY_
FAILEDif the job
failed.

ACTIVITY_FAILED

Activity Features

JOS Process Flow 4-19

Activity Features

4-20 Oracle Retail Job Orchestration and Scheduler Implementation Guide

Process Execution Trace
The Process Flow engine keeps track of process execution details in BDI_PROCESS_
CALL_STACK_TRACE table. Also, in order for a sub-process to appear in the trace,
the sub-process must be called with the new api as shown below.

triggerProcess(<Base URL>, <Sub Process Name>, <credentials>, <Process Parameter
Map>)

Example:

triggerProcess("http://host:port/bdi-process-flow", "DiffGrp_Fnd_ProcessFlow_From_
RMS", "userid:password", null)

REST end point to get process execution trace
http://<host>:<port>/bdi-process-flow/resources/telemetry/processes/execution-tr
ace/{ProcessExectionId}

Sample Output
{
 "executionId": "Diff_Fnd_ProcessFlow_From_
RMS~8e1c7c11-1302-409d-9102-c55fffbdc1ab",
 "executionName": "Diff_Fnd_ProcessFlow_From_RMS",
 "activityExecutionId": "",
 "url": "",
 "status": "PROCESS_COMPLETED",
 "duration": 0,
 "type": "PROCESS",
 "invocationTime": "2017-07-19T12:21:20.061-06:00",
 "children": [
 {
 "executionId": "ItemImage_Fnd_ProcessFlow_From_
RMS~89f46519-50ab-4a51-a6fb-c6c5395afeca",
 "executionName": "ItemImage_Fnd_ProcessFlow_From_RMS",
 "activityExecutionId": "Activity2~a408b407-c4f0-4137-ba32-6ddd148f0838",
 "url":
"http:\/\/msp8917:8001\/bdi-process-flow\/resources\/batch\/processes\/operator\/I
temImage_Fnd_ProcessFlow_From_RMS",
 "type": "PROCESS",
 "invocationTime": "2017-07-19T12:21:20.534-06:00",
 "children": [
]
 },
 {
 "executionId": "DiffGrp_Fnd_ProcessFlow_From_
RMS~bb68a1ea-86a5-4108-aa58-b9e791d1fb8c",
 "executionName": "DiffGrp_Fnd_ProcessFlow_From_RMS",
 "activityExecutionId": "Activity1~602ad027-7946-4820-acd8-cf452f5fc937",
 "url":
"http://host:port/bdi-process-flow/resources/batch/processes/operator/DiffGrp_Fnd_
ProcessFlow_From_RMS",
 "type": "PROCESS",
 "invocationTime": "2017-07-19T12:21:20.296-06:00",
 "children": [
 {
 "executionId": "ItemHdr_Fnd_ProcessFlow_From_
RMS~3886b39f-6268-4895-8e5e-300ded42665b",
 "executionName": "ItemHdr_Fnd_ProcessFlow_From_RMS",
 "activityExecutionId": "Activity2~8e9f9a6a-440a-41dd-a648-f4322102012b",

Activity Features

JOS Process Flow 4-21

 "url":
"http://host:port/bdi-process-flow/resources/batch/processes/operator/ItemHdr_Fnd_
ProcessFlow_From_RMS",
 "type": "PROCESS",
 "invocationTime": "2017-07-19T12:21:20.705-06:00",
 "children": [

]
 },
 {
 "executionId": "InvAvailWh_Tx_ProcessFlow_From_
RMS~6c462406-a991-4754-9d94-73628091114a",
 "executionName": "InvAvailWh_Tx_ProcessFlow_From_RMS",
 "activityExecutionId": "Activity1~e7f8e9fa-7ba6-4a51-81e2-bdcfe752c15e",
 "url":
"http://host:port/bdi-process-flow/resources/batch/processes/operator/InvAvailWh_
Tx_ProcessFlow_From_RMS",
 "type": "PROCESS",
 "invocationTime": "2017-07-19T12:21:20.538-06:00",
 "children": [
]
 }
]
 }
]
}

Process Metrics Service
Process Metrics provides an end point to produce metrics for processes that ran
between "fromTime" and "toTime".

Path: /telemetry/processes

HTTP Method: GET

Parameters:

fromTime - Query parameter

toTime - Query parameter

Sample Response:

<process-runtime-monitoring-info>
 <data-requested-at>2017-10-09T10:24:27.848-06:00</data-requested-at>
 <data-requested-from-time>2017-03-01T00:00:00-06:00</data-requested-from-time>
 <data-requested-to-time>2017-08-01T00:00:00-06:00</data-requested-to-time>
 <process-server-runtime-info>
 <id>bdi-process</id>
 <app-status>RUNNING</app-status>
 <up-since>2017-10-09T10:22:34.498-06:00</up-since>
 <total-executions-count>16</total-executions-count>
 <successful-executions-count>8</successful-executions-count>
 <failed-executions-count>7</failed-executions-count>
 <process>
 <name>DiffGrp_Fnd_ProcessFlow_From_RMS</name>
 <slowest-run-duration>0.0</slowest-run-duration>
 <fastest-run-duration>120.0</fastest-run-duration>
 <avg-run-duration>60.2315</avg-run-duration>
 <executions>
 <exceution-count>1</exceution-count>

Activity Features

4-22 Oracle Retail Job Orchestration and Scheduler Implementation Guide

 <success-count>0</success-count>
 <failure-count>1</failure-count>
 <execution>
 <execution-id>
DiffGrp_Fnd_ProcessFlow_From_RMS~650dba75-b632-42ea-963b-802c560d0c6b
</execution-id>
 <status>PROCESS_FAILED</status>
 <start-time>2017-05-17T14:39:32.489-06:00</start-time>
 <end-time>2017-05-17T14:39:33.535-06:00</end-time>
 <activity-exe>

<activity-exe-id>begin~2ac2bc4d-6233-41ac-a134-5fb73ebba275</activity-exe-id>
 <name>begin</name>
 <duration>0.0</duration>
 <status>ACTIVITY_COMPLETED</status>
 </activity-exe>
 <activity-exe>
 <activity-exe-id>
DiffGrp_Fnd_ExtractorActivity~035b6e78-411e-4868-b441-f2e79a3dba61
</activity-exe-id>
 <name>DiffGrp_Fnd_ExtractorActivity</name>
 <duration>0.0</duration>
 <status>ACTIVITY_SKIPPED</status>
 </activity-exe>
 <activity-exe>
 <activity-exe-id>
DiffGrp_Fnd_ExtractorStatusActivity~7d92a1c1-721a-416d-86ac-c412f9e49982
</activity-exe-id>
 <name>DiffGrp_Fnd_ExtractorStatusActivity</name>
 <duration>0.0</duration>
 <status>ACTIVITY_SKIPPED</status>
 </activity-exe>
 <activity-exe>
 <activity-exe-id>
DiffGrp_Fnd_GetDataSetIdActivity~423d19e3-8c9d-44b2-93b9-183f41cd0840
</activity-exe-id>
 <name>DiffGrp_Fnd_GetDataSetIdActivity</name>
 <duration>0.0</duration>
 <status>ACTIVITY_SKIPPED</status>
 </activity-exe>
 <activity-exe>
 <activity-exe-id>
DiffGrp_Fnd_DownloaderAndTransporterActivity~70bac2cb-c414-4be8-a5ab-0ef21fd2fc4d
</activity-exe-id>
 <name>DiffGrp_Fnd_DownloaderAndTransporterActivity</name>
 <duration>0.0</duration>
 <status>ACTIVITY_FAILED</status>
 </activity-exe>
 <activity-exe>

<activity-exe-id>end~5c07a938-864b-4156-bab7-70b96bcb2d74</activity-exe-id>
 <name>end</name>
 <duration>0.0</duration>
 <status>ACTIVITY_FAILED</status>
 </activity-exe>
 </execution>
 </executions>
 </process>
 </process-server-runtime-info>
</process-runtime-monitoring-info>

Process Customization

JOS Process Flow 4-23

Process Security
The Process Flow application uses basic authentication to access the system. The user
must belong to BdiProcessAdminGroup, BdiProcessOperatorGroup, or
BdiProcessMonitorGroup to use the process flow REST services and process flow
admin application.

There are two authorization roles designed for the process flow application: the
Operator role and the Admin role. The Admin role has permissions to use all the
functions provided by the process flow application. The Operator role has limited
access compared to Admin, as identified in the table below. The Monitor role has the
fewest access permissions.

Table 4–6 Authorization Roles

Service/Action Monitor Role Operator Role Admin Role

Update Process DSL No No Yes

Start/Restart Process No Yes Yes

Skip/Hold/Release No Yes Yes

All other services Yes Yes Yes

Process Customization

Seed Data
During the deployment of Process Flow, seed data gets loaded. Seed data files are
located in "jos-process-home/setup-data/dml" folder. If seed data is changed, Process
Flow needs to be reinstalled and redeployed. For loading seed data during
redeployment, LOADSEEDDATA flag in BDI_SYSTEM_OPTIONS need to be set to
TRUE.

Process DSL Reload
Along with seed data, the process DSL also gets loaded to BDI_PROCESS_
DEFINITION table during the deployment time. Process DSLs are located in
"jos-process-home/setup-data/dsl/flows-in-scope" folder. If you want to load DSLs
again after DSLs are added or update, Process Flow needs to be redeployed. For
loading DSLs during the redeployment, LOADPROCESSDEF flag in BDI_SYSTEM_
OPTIONS table need to be set to TRUE.

Deployment of Process Flow first time loads both seed data and process DSLs.

Redeployment loads seed data depending on the LOADSEEDDATA and
LOADPROCESSDEF flag values.

Table 4–7 Redeployment Scenarios

LOADSEEDDATA LOADPROCESSDEF Behavior

TRUE TRUE Loads both seed data and process
DSLs

TRUE FALSE Loads seed data only

FALSE TRUE Loads process DSLs only

FALSE FALSE Does not load seed data and process
DSLs

Troubleshooting

4-24 Oracle Retail Job Orchestration and Scheduler Implementation Guide

Troubleshooting
Since the process flow can be written in Groovy and DSL, it is prone to programming
mistakes. Any custom DSL must be properly tested before deploying. The process
flow engine can detect syntax errors only at runtime. So it is possible to load an
incorrect process flow and fail during runtime.

At the end of an activity, the process engine invokes the next activity, depending on
the result of activity execution (the "moveTo" statement). If you have empty activities
(possibly because you commented out the existing invocation statements), make sure
the activity result is valid.

If any activity fails, the process is marked as failed. So in case of process failure,
examine the activity details to find out which activity failed. Once the failed activity is
identified, the process variables can be inspected to look for any issues. The next step
would be to look at the logs through the Process Flow Monitor application to see the
details of the issue. Once the issue is fixed, either a restart or a new run of the process
flow can be used, depending on the requirement.

Process Flow Did Not Start
To address this, verify the logs. It could be due to the missing Credentials Access
permission, missing system credentials, or a missing system options or DSL parsing
error.

Deleted Process Flow Still Listed in the UI
Deleting a process flow from jos-process-home does not delete it from the process flow
application because the process flow application refers to the database entries. In order
to delete a process flow from the JOS Process Flow application, the script DELETE_
PROCESS_FLOW.sql(jos-process-home/setup-data/dml/) must be run in the JOS
Schema.

Best Practices for Process Flow DSL
The following best practices for Process Flow DSL include:

■ Use naming conventions for process flows and activities in the process flow so that
they are easily identified. It is recommended that the name of the process flow
includes "Process" and the name of activities ends with "Activity".

■ Use the built-in startOrRestartJob method to start/restart a job in Job Admin.

■ Use the built-in waitForJobCompletedOrFailed method to wait until job is
complete or failed.

Best Practices for Process Flow DSL

JOS Process Flow 4-25

■ Use the built-in triggerProcess to start a sub process.

■ Access system options through externalVariables.

■ Use processVariables to share variables between activities.

■ Use the built-in waitForProcessInstancesToReachStatus to wait for other process
instances.

■ Use the built-in waitForProcessNamesToReachStatus to wait for other processes.

■ It is recommended to use flo as the extension for the process flow DSL file.

■ Use the built-in REST DSL to make rest calls.

■ Organize process flows as hierarchical parent child flows, where the parent
manages the child flows.

■ Avoid using too many waitFor calls, as active threads can get blocked.

Best Practices for Process Flow DSL

4-26 Oracle Retail Job Orchestration and Scheduler Implementation Guide

5

Scheduler 5-1

5Scheduler

The Scheduler application JOS product suite assists in the scheduling of batch
processes to run at predefined configured time intervals. A schedule determines when
a job, a process, or any program must be executed, as well as the frequency of
execution.

The Scheduler application runtime is based on a container-managed Java EE timer
service to execute the schedules and uses Oracle WebLogic Server's implementation
and management of the timer service when deployed on a WebLogic server.

The Scheduler supports various schedules ranging from simple interval schedules
such as hourly, daily, and so on, to advanced cron-like scheduling.

The Scheduler supports the calling of REST services.

The Scheduler Console (Admin UI) enables runtime monitoring and administration of
schedules where the user can view, create, edit, and delete schedules, manually run a
schedule, enable or disable a schedule, set up notifications for schedules, and so on.

JOS Scheduler Features
The Scheduler is a web application that provides a GUI for managing a
schedule-based workload. It includes the following features:

■ DSL based Schedule Action - Call process flows, running any local/remote
programs.

■ Run remote programs with REST calls.

■ Externalized Schedule Definition and Schedule Actions. Easily import/export
schedule and action definitions.

■ GUI to create, edit, delete, enable, or disable schedules.

■ Monitor schedule executions and logs.

■ Monitor schedule's progress and history.

■ Built-in e-mail notification.

Scheduler Concepts
The following section describes the Scheduler concepts.

Scheduling Mechanisms

5-2 Oracle Retail Job Orchestration and Scheduler Implementation Guide

Schedule Definition
A schedule definition contains details of a schedule such as Schedule Name and
Schedule Group. These indicate the logical or functional grouping of schedules and
schedule description.

Schedule Execution
A schedule execution is an instance of the scheduled run of a schedule at the specified
frequency.

Schedule Types
A schedule can be an interval-based schedule or a calendar-based schedule.

Interval Schedules
An interval-based schedule is a schedule that repeats at fixed interval of time starting
from a specific time, for example, hourly, daily, weekly, every five minutes, and so on.

Calendar Schedules
A calendar-based schedule is a cron-type of schedule that specifies different times that
the schedule runs. More complex schedules that can be specified as a cron expression
are defined as calendar-based schedules.

The following parameters define a calendar-based schedule. These are the same as the
parameters in a cron expression: Minutes, Hours, Day of Week, Day of Month, and
Month.

Note: The Scheduler does not currently support seconds and year
parameters in a calendar schedule.

Scheduling Mechanisms
This section describes the various scheduling mechanisms.

Simple Scheduling
Simple schedules are predefined schedule frequencies that are available as options for
the user to choose. The following are the simple schedules that the Scheduler supports.

■ Hourly

■ Daily

■ Weekly

■ Monthly

■ Weekday [Mon-Friday]

■ Weekend [Sat-Sunday]

■ Saturday

■ Sunday

■ First day of every month

Scheduling Mechanisms

Scheduler 5-3

■ Last day of every month

■ One time only (run once)

■ User-specified frequency with intervals in the units minutes, hours, days, or
weeks.

Advanced Scheduling
The JOS Scheduler supports advanced scheduling, which is cron-like scheduling.
Calendar-based schedules that can be expressed in cron-format can be set up with the
advanced scheduling capability of the Scheduler. Advanced scheduling is defined
with the following parameters (similar to that of cron expression) and the
corresponding range of values:

■ Minutes: 0-59

■ Hours: 0-23 (12:00 a.m. - 11:00 p.m.)

■ Day of Week: Monday - Sunday

■ Day of Month: 1-31

■ Month: 1-12 (January - December)

If a schedule is created with multiple values for the above parameters, then the
schedule will repeat at all those specified times.

Schedule Frequency
The schedule frequency defines the frequency at which a schedule has to be repeated
at the configured time and interval, starting from a given point of time. The schedule
frequency has the following parameters that determine when the schedule must be
run.

Schedule Start Datetime
It specifies the start date and time when a particular schedule has to start executing.

For interval based schedules, this is the first time the schedule runs and then repeats
based on the specified interval.

For example, a schedule with a start datetime as 2016-08-15 10:00 a.m. and a repeat of
Daily will first run at 2016-08-15 10:00 a.m. and next run at 2016-08-16 10:00 a.m. and
so on.

For calendar schedules (cron schedules), this defines the time when the schedule will
become effective and starts executing based on the frequency. So it is not necessarily
the first run of the schedule, though it very well may be.

For example, a schedule with a start datetime as 2016-08-15 10:00 a.m. (which is a
Monday) but repeats every Thursday, will first run at 2016-08-18 10:00 a.m. (Thursday)
and subsequently next run at 2016-08-25 10:00 a.m. (Thursday) and so on.

So the Start Datetime here signifies the datetime the schedule becomes effective. It will
not run before that datetime. However, here the Start Datetime can very well be
specified as 2016-08-18 10:00 a.m. (Thursday) and repeat every Thursday.

So in summary, for interval-based schedules, the first run of the Schedule equals
Schedule Start Datetime. For calendar-based schedules, the first run of the Schedule
may or may not be equal the Schedule Start Datetime, based on the schedule
recurrence specified.

Scheduling Mechanisms

5-4 Oracle Retail Job Orchestration and Scheduler Implementation Guide

Schedule End Datetime
It specifies an end date and time when the schedule must stop executing and no longer
run. When a schedule has no end datetime specified, it runs indefinitely.

Note: The end datetime is inclusive for the schedule execution,
meaning if the schedule recurrence coincides with the end datetime,
the schedule will execute at the end datetime and only then does not
repeat.

For example, if Schedule Start Datetime: 2016-08-15 10:00 a.m., repeat Hourly,
Schedule End Datetime: 2016-08-15 11:00 a.m., then the schedule will run at 10:00 a.m.
and also at 11:00 a.m. before ceasing to run.

Recurrence / Repeat Interval
This specifies the frequency at which the schedule repeats. This is same as described in
Simple and Advanced Scheduling.

Schedule Next Run Datetime
This indicates the date and time of the next occurrence of the schedule, obtained based
on the configured schedule frequency.

Schedule Timzone
All the date and times in the Scheduler are based on the timezone of the server (JVM)
where the application is deployed.

The Scheduler Console (UI) displays the server's current date and time with timezone
(the current time displayed is refreshed when the UI is refreshed).

When creating or updating a schedule and in monitoring schedule executions in
Scheduler Console, users should note that the date and time are as per the timezone
setup in the application server and not the local timezone.

Schedule Action
This section describes the various schedule actions.

Schedule Action Definition
The Schedule Action defines what is executed when the schedule runs at the specified
frequency. It is a DSL that is based on Groovy. The schedule action has a simple syntax
as follows.

action {

//Define what needs to be executed, here. Say invoke a REST service.

}

Currently Schedule Action supports calling REST services. JOS process flows are
called by the Scheduler as REST services.

For example, to trigger a JOS process flow named Store_Fnd_ProcessFlow_From_RMS,
the following schedule action is defined.

action {

Scheduling Mechanisms

Scheduler 5-5

(POST[externalVariables.processFlowAdminBaseUrl +
"/resources/batch/processes/operator/Store_Fnd_ProcessFlow_From_
RMS"]^externalVariables.processFlowAdminBaseUrlUserAlias) as String

POST denotes the REST method.

processFlowAdminBaseUrl is an entry key in 'externalVariables' map variable used by
the Scheduler runtime and specifies the BDI Process Flow Admin's base URL. The
value for processFlowAdminBaseUrl is specified during install time and gets stored in
the BDI System Options. For example, the value of processFlowAdminBaseUrl might
be https://<host>:<port>/bdi-process-flow.

For example, https://example.com:8001/bdi-process-flow

■ /resources/batch/processes/operator/Store_Fnd_ProcessFlow_From_RMS is the
relative REST URL to call the process flow.

■ It is of the form /resources/batch/processes/operator/<process flow name>.

■ processFlowAdminBaseUrlUserAlias is an entry key in externalVariables map
variable used by the Scheduler runtime and specifies the alias name for JOS
Process Flow Admin's user credentials to access the process flow REST service.

– The value for processFlowAdminBaseUrlUserAlias is specified during install
time and is stored in the BDI System Options.

Basic authentication is used to access the JOS process flows. The Scheduler uses
processFlowAdminBaseUrlUserAlias to look up the credentials in the runtime secure
wallet where the credentials specified at install-time are stored.

Scheduler by itself does not manage executions of process flows called from within the
schedule action and any dependencies associated thereof. Scheduler only triggers
process flows. The execution of process flows is done by the Process Flow engine.

For any dependencies between execution of process flows to be managed, it is
recommended that such dependencies are defined in the JOS Process Flow Admin and
not in the Schedule Action.

For example, if process-flow-2 must be run after process-flow-1 completes, use Process
Flow Admin to define this dependency and not the Schedule Action.

It is recommended to avoid time-based dependency management in the execution of
process flows from within the Scheduler, but rather use Process Flow Admin to
coordinate such dependency execution requirements.

Note: For security reasons, the usage of certain keywords is not
allowed in the Schedule Action DSL. When defining the schedule
action in the Scheduler UI, any such forbidden keywords if used will
prevent the schedule from being created or updated. A schedule
cannot be run if such a keyword is present in the schedule action
definition.

Schedule Action Type
There are two types of Schedule Action, Sync and Async. When creating a schedule
and defining a schedule action, the user must specify whether the schedule action is
sync or async. Scheduler determines the action execution statuses according to the
action type specified.

Scheduling Mechanisms

5-6 Oracle Retail Job Orchestration and Scheduler Implementation Guide

Sync Action
It executes synchronously and returns a result after its successful or failed completion
(however long the action may run).

Async Action
The action is asynchronous and returns a response immediately when triggered, but
will continue to execute. The actual process completes at a later time. The end result of
the action is not known to Scheduler in this case.

Schedule Action Execution Status
Indicates the status of execution of the schedule action when the schedule has run at
the configured frequency of time.

A schedule execution can be in one of the following statuses, depending upon the
Schedule Action Type and its execution.

■ Triggered (applicable only for Async action)

■ Started (applicable only for Sync action)

■ Failed (applicable for both Async and Sync actions)

Schedule Action Type and Execution Status
Schedule action type determines the schedule action status during the execution life
cycle.

Sync Action Execution Statuses
It executes synchronously and returns a result after its successful or failed completion
(however long the action may run).

■ When sync action starts, the Schedule Action status will marked 'STARTED'.

■ When the action completes and returns a successful result, the status will be
marked 'COMPLETED'.

■ When the action does not complete because of an exception or returns a failed
response (return value = “FAILED”), then the status will be marked 'FAILED'.

Async Action Execution Statuses
The schedule action status will only be TRIGGERED when the Scheduler successfully
invokes the schedule action.

In case there is an exception in invoking the action itself, then the status is 'FAILED'.

By default, all BDI process flows are asynchronous that return an execution ID when
triggered, but continue to run to invoke the batch jobs that complete at a later time.

How the Action Execution Statuses are Determined
■ Scheduler marks the Action Execution Status as 'FAILED' when there is an

exception in executing the action or when an exception is thrown from the
schedule action. In order for the Scheduler to mark the execution of schedule
action as 'FAILED' when the action has been executed, the action should either
throw an exception or return value as 'FAILED'.

■ If the schedule action returns null or any other return value gracefully, the action
execution status will be marked 'TRIGGERED' for async action and 'COMPLETED'

Scheduler Runtime

Scheduler 5-7

for sync action, and the returned response is stored as such in the Schedule Action
Execution Log.

Schedule Status
A schedule can be in one of the following statuses:

■ Active: An active schedule is running at the specified frequency.

■ Inactive: An inactive schedule has reached its end datetime and no longer runs.

■ Disabled: A disabled schedule indicates that the user has disabled the schedule to
not run at its specified frequency.

Scheduler Runtime
This section describes the various Scheduler Runtime options.

Scheduler Startup
As the Scheduler is deployed and the application starts up, the Scheduler service
performs the following actions:

■ Loads the schedules defined in the seed data SQL script in the installer. This
means, schedule definitions are inserted in the corresponding Scheduler
infrastructure table.

■ Loads the schedule action DSL for each corresponding schedule from the *_
Action.sch files in the installer. Each schedule definition in the table is updated to
include its corresponding schedule action.

■ The Scheduler service sets up the runtime timers for each schedule.

When the application is deployed for the first time, all schedules will be set up new.
However, when the application is redeployed or the application server is restarted,
any existing schedule timers will not be recreated.

All seed data schedules must be specified with status as Active. This ensures that the
schedule timers are created at startup and the schedules start to run as per the
frequency defined.

When a schedule action DLS contains any restricted keyword, the schedule will be
Disabled at startup and will not run. The user must correct the schedule action
definition from the Scheduler UI and enable the schedule to make it active.

Schedule Runtime Execution
Scheduler uses application server's implementation of Java EE compliant timer service
to execute the schedules at runtime. When a schedule is created, Scheduler sets up a
timer in the application server based on the schedule frequency configured. At each
scheduled time, the application server invokes the callback method where the
Scheduler will execute the schedule action.

Each schedule timer executes in separate thread, so schedule executions do not block
each other. Each schedule execution itself is run synchronously in its own thread; that
is, the execution is blocked until it completes. But the schedule action can be specified
to be asynchronous (async action) or synchronous (sync action) based on the action
DSL defined for the schedule.

Scheduler Runtime

5-8 Oracle Retail Job Orchestration and Scheduler Implementation Guide

It is appropriate to specify a schedule action as 'async' when all the service calls made
within the schedule action are non-blocking asynchronous calls and the action defined
runs in different thread from that of the Scheduler.

If any of the service call within the schedule action is a blocking synchronous call and
the action is not defined to run in separate thread, then the action type must be 'sync'.

Specifying the schedule action type 'async' or 'sync' based on the action DSL definition
determines the runtime execution behavior and statuses of the schedule execution.
This is explained below.

Schedule Execution - Async Action
When the schedule action execution starts for an async action, the action execution
status is set to TRIGGERED and the action is executed. As the action type is specified
Async, the action should be non blocking, either returning a response immediately or
not returning a response and continuing execution, but runs in separate thread
returning the control immediately.

Figure 5–1 Async Action

The execution of the action and the eventual status thereof will not be known to
Scheduler. Once the control is returned, the schedule action execution ends but the
status remains TRIGGERED. In case of an exception when the action is triggered, the
status is set to FAILED and the execution ends.

Schedule Execution - Sync Action
When the schedule action execution is started for a sync action, the action execution
status is set to STARTED. As the action type is specified sync, the action is blocking
and runs in the same thread as the schedule execution.

Scheduler Runtime

Scheduler 5-9

Figure 5–2 Schedule Execution

The schedule execution ends only when the action completes returning a response or
throws an exception, thereby releasing the execution thread.

After the schedule action completes successfully returns, the status is set to
COMPLETED. But if the action return value is FAILED or the action returns throwing
an exception, the status is set to FAILED.

For sync actions, the action execution status in Scheduler can indicate the actual
execution status (either completed or failed) of the process that was executed.

Schedule Execution Failover
All schedule timers created by the Scheduler are persistent. This enables a failover
feature that in case of unexpected server shutdown or downtime, the missed schedules
will be run once the server is back up. That is, the schedules that should have been run
during the downtime will be run as soon as the server is back up and the application is
in running state.

Note: A missed schedule will be run only once, not as many times as
was missed during the downtime. For example, if a schedule is
scheduled to run every five minutes and the application server is
down for fifteen minutes and restarted, the schedule will be run only
one time and not three times. This is a feature supported by the Java
EE container.

Schedule Notification
Scheduler supports e-mail notification of scheduled runs at runtime. The available
options of events for notifications on a scheduled run are:

■ Notify when the schedule action execution begins.

– This occurs when the schedule action execution is Started for sync action and
before triggering of action execution for async action.

■ Notify when the schedule action execution ends successfully.

Scheduler Runtime

5-10 Oracle Retail Job Orchestration and Scheduler Implementation Guide

– This occurs when the schedule action execution status is Triggered for async
actions and Completed for sync actions.

■ Notify when the schedule action execution fails.

– This occurs when the status of schedule action execution is Failed, when one
of the following occurs: An exception is caught in the Scheduler service itself,
when an exception is thrown by the schedule action DSL, when the schedule
action DSL returns the string FAILED.

Scheduler Infrastructure Schema
The Scheduler infrastructure relies on the following schema to store the schedule
definitions and schedule executions.

Scheduler service captures all schedule executions at runtime and persists the
execution instances in the corresponding infrastructure table.

Table 5–1 Scheduler Infrastructure Schema

Table Name Description

BDI_SCHEDULE_DEFINITION This table contains all the schedule definitions
created, including schedule frequency, schedule
notification information and schedule action DSL
for each schedule.

Seed data schedules are loaded in this table at
deployment time during application startup.

BDI_SCHEDULE_EXECUTION All schedule executions at runtime are persisted in
this table.

BDI_SYSTEM_OPTIONS This table contains system-level global parameters
as key-value pairs used by the Scheduler at
runtime, such as, Process Flow Admin Base URL,
Process Flow Admin User Alias, which are
configured at install time by the user. User can also
add system parameters to be made available to the
schedule actions.

BDI_EMAIL_NOTIFICATION This table contains email notification details

Best Practices for Scheduler
Best practices include:

■ Use POST DSL method to post to REST URL.

■ Use externalVariables for accessing variables from BDI_SYSTEM_OPTIONS table.

■ Use sch as extension for schedule action DSL file.

■ Try not to use time-based dependency management between schedules; instead,
use process flow to manage dependency.

■ To schedule any existing jobs or programs, try to expose them as REST services
and use the built-in DSL POST method to schedule action for executing the
programs.

■ Minimize use of synchronous schedule actions since they block until completion
during each schedule execution.

Scheduler Console

Scheduler 5-11

Scheduler Console
Scheduler Console (Admin UI) is a web user interface provided by Scheduler where
users can monitor and manage schedules, including creating, updating, deleting,
disabling, or enabling schedules, manually running schedules, viewing schedule
executions and schedule logs.

The following describes various functions available in Scheduler Console in the
current release.

Note: It is recommended to use the Chrome web browser to access
Scheduler Console since the calendar widget for datetime fields is
supported by Chrome browser and not by Firefox or IE.

Schedule Summary
This is the home page that provides the overall summary of the scheduler runtime. It
displays the following information.

Schedules and Executions
This displays the total count of:

■ Active Schedules

■ Schedule Executions today

■ Schedule Executions that were successful today

■ Schedule Executions that failed today

Note: The use of “Today” in the figure below indicates the duration
from midnight to now.

Figure 5–3 Schedules and Executions Screen

Upcoming Schedules
Lists the future schedules that are expected to run in the next 24 hours from now.

Figure 5–4 Upcoming Schedules Screen

Manage Schedules

5-12 Oracle Retail Job Orchestration and Scheduler Implementation Guide

Schedule Executions Failed Today
This lists the schedule executions that have failed today (from midnight to now).

Figure 5–5 Schedule Executions Failed Today Screen

Schedule Executions Completed / Triggered Today
This lists the schedule executions that are completed or triggered today (from
midnight to now). A status of Completed represents sync actions and status of
Triggered represents async actions.

Schedule Executions In Progress Today
This lists the schedule executions that were started but have not completed and are in
progress today (from midnight to now). This is applicable only for sync actions that
are in Started status.

Schedules Past Due
This lists the schedules that failed to run at the scheduled time (that is, schedules
whose next run time is before the current time are displayed here). Ideally, there
should be no missed schedules unless there may be an internal server issue that the
schedule timer failed to run.

Manage Schedules
The Manage Schedules page displays a list of all the schedules and details of each
schedule in the Schedule Detail view and their corresponding schedule executions in
the Schedule Executions view for the schedule.

The schedules list provides options to filter schedules based on Schedule Name,
Schedule Group, Schedule Status, and Schedule Frequency. There is also an option to
filter upcoming schedules based on a date range.

The Create Schedule function will be available in this page for Admin users.

Manage Schedules

Scheduler 5-13

Figure 5–6 Scheduler Console

Creating a Schedule
The Create Schedule option displays one page where the user can enter and save all
required information to create a schedule. The page displays input fields under four
sections as follows.

■ Basic Information

■ Schedule Action

■ Frequency

■ Notification

Figure 5–7 Create Schedule Screen

Basic Information
Schedule Name, Schedule Group, and Schedule Description are entered under Basic
Info. Schedule Name and Schedule Group are required fields.

Manage Schedules

5-14 Oracle Retail Job Orchestration and Scheduler Implementation Guide

Schedule Name must be unique. The user can choose an existing Schedule Group or
add a new group name for the schedule.

There is limitation to the number of characters that these fields can accept.

Schedule Action
Specify a valid schedule action definition here that will get executed when the
schedule runs.

If any restricted keyword is present in the action definition, the schedule cannot be
saved, and when saving the schedule, an error highlighting the restricted keyword
will be displayed.

Also choose here whether the schedule action is Async (which is the default selected
option) or Sync.

Note: The schedule action is not validated or compiled for syntax
when creating a schedule, so any syntax or programming errors in the
action definition will result in an exception at runtime and the
schedule execution will fail.

Figure 5–8 Schedule Action Screen

Schedule Frequency
It consists of Schedule Start Date time, End Date time, and Schedule Recurrence.

Schedule End Datetime is Never by default, meaning the schedule never ends and
repeats indefinitely. If the schedule has an end datetime, the user can enter a specific
datetime.

Start Datetime defaults to 5 minutes from current time and End Datetime defaults to 6
minutes from current time when chosen.

Scheduler provides two options to specify recurrence of schedule: Simple Scheduling
and Advanced Scheduling. Use the options tabs to toggle between Simple and
Advanced Scheduling options.

Start and End datetimes should be future dates. Schedule End datetime if specified
should be after the scheduled start datetime. These validations will be done when
saving the schedule.

Simple Scheduling
Simple Scheduling provides the following predefined schedules that the user can
choose from a drop-down list.

Manage Schedules

Scheduler 5-15

■ Hourly

■ Daily (selected by default)

■ Weekly

■ Every Weekday [Mon-Friday]

■ Monthly

■ On Weekends [Sat-Sunday]

■ Every Saturday

■ Every Sunday

■ First day of every month

■ Last day of every month

■ One time only

■ Specify a different frequency. User can use this option to specify a recurring
interval in minutes, hours, days or weeks, for example, 30 minutes, 2 hours, 3
days, and so on.

Advanced Scheduling
Advanced Scheduling enables the user to specify complex schedules similar to a cron
expression. The user can choose multiple values for Hours, Minutes, Day of Week, Day
of Month, and Month options using the multi-select lists.

The default schedule frequency here is daily midnight (Hours: 12 a.m., Minutes: 0 are
the values selected by default).

Figure 5–9 Advanced Scheduling

Schedule Notification
Use the schedule notification option to enable e-mail notification for the schedule
when schedule execution starts or fails or completes.

Enter valid e-mail addresses for notification. When enabled, e-mail alerts will be sent
based on the options selected.

Manage Schedules

5-16 Oracle Retail Job Orchestration and Scheduler Implementation Guide

Starts:
When this option is chosen, e-mail will be sent when the schedule execution starts,
that is, when the schedule runs at the scheduled interval, and just before the execution
of schedule action.

Fails:
An e-mail is sent when there is an exception in schedule execution or when the
schedule action throws an exception, or returns a Failed response. This means the
schedule action execution will be in Failed status.

Triggered / Completed:
An e-mail will be sent when the schedule action execution status is Triggered (for
async actions) and Completed (for sync actions). This means the schedule execution is
successful.

Figure 5–10 Notification Screen

Note: For schedule notification to work, the mail session must have
been configured in the WebLogic server. Refer to the JOS Installation
Guide for details on the configuration of a mail session.

Updating a Schedule
A schedule can be updated by selecting the schedule from the Manage Schedules page
and using the Edit option in Schedule Detail view.

The Edit page is same as that of the Create Schedule page with the schedule
information populated. Update the values as required in the relevant sections as
explained previously for creating schedule. Only an Admin user can edit a schedule.

Note: Updating the schedule frequency will validate the schedule
start datetime and end datetime (if specified), similar to when creating
a schedule.

Updating any other details other than schedule frequency will not validate the existing
schedule frequency, as the schedule will continue to run at the already defined
frequency and only the other details of schedule definition will get updated as
modified by the user.

When changing the schedule action definition, any restricted keywords will be
validated.

Manage Schedules

Scheduler 5-17

Figure 5–11 Schedule Detail Screen

Disabling a Schedule
A schedule can be disabled by selecting the schedule from Mange Schedule page and
using the Disable schedule option in the Schedule Detail view. Only Admin and
Operator users can disable a schedule.

Disabling a schedule will change the schedule status to Disabled and the schedule will
no longer run at the specified frequency. However, the schedule can be manually run
using the Run Schedule Now option.

Note: An Inactive schedule cannot be disabled, since an inactive
schedule has reached its end already and no longer runs.

Figure 5–12 Cancelled Schedule Message

Manage Schedules

5-18 Oracle Retail Job Orchestration and Scheduler Implementation Guide

Enabling a Schedule
A disabled schedule can be enabled again using the Enable schedule option from the
Schedule Detail view. Only Admin and Operator users can enable a schedule.

Enabling the schedule will change the status of the schedule to Active and the
schedule will resume running at the specified frequency.

Figure 5–13 Enabled Schedule Message

Deleting a Schedule
A schedule can be deleted using the Delete schedule option in the Schedule Detail
view. Only an Admin user can delete a schedule.

Note: Deleting a schedule will delete the schedule definition and
also its entire execution history. The schedule will no longer exist and
will not run after deletion. There is no way to restore a deleted
schedule except by creating the schedule again.

Figure 5–14 Deleted Schedule Message

Manage Schedules

Scheduler 5-19

Schedule a Manual Run
Any schedule can be manually run using the Run Schedule Now option from the
Schedule Detail view. Inactive and disabled schedules can also be manually run.

This option is provided so that the user can run a schedule on demand when required.
Only Admin and Operators can access this function.

When the schedule is run manually, the schedule action is submitted for execution in
the backend and the result of execution can be seen from the Schedule Executions
view.

Figure 5–15 On Demand Success Message

Schedule Executions
From the Schedule Executions page, the user can view all available historical schedule
executions. The page will display schedule executions for the last one week by default.
The user can use the search option to enter a different date range to obtain the
corresponding schedule executions.

Within the list of schedule executions, the records can be filtered based on Schedule
Name, Action Execution Status, and any string within the Action Execution Log. The
list of scheduled executions are sorted by schedule execution datetime, the latest first.

Manage Schedules

5-20 Oracle Retail Job Orchestration and Scheduler Implementation Guide

Figure 5–16 List of Schedule Executions

Manage Configurations
From the Manage Configurations page, user can manage log levels, notifications, and
system options.

Log Level
The Log Level page displays log levels for all schedules. Users can change log level for
one or more schedules.

Figure 5–17 Log Level Page

Notifications
Users can view/update notifications details from the Scheduler Notifications page.

Manage Schedules

Scheduler 5-21

Figure 5–18 Scheduler Notifications Page

System Options
Users can add/update/delete system options from the System Options page.
Credentials can also be created when a system option is created.

Figure 5–19 System Options Page

System Logs
The System Logs page displays list of all schedule log files and log contents. Each
schedule has its own log file, enabling easy access for the user to view the execution
logs and other information from the log files for diagnosing and troubleshooting
issues.

The list of log files are sorted by last modified time of file, with most recently modified
file first.

Scheduler Security Considerations

5-22 Oracle Retail Job Orchestration and Scheduler Implementation Guide

Figure 5–20 System Logs

Scheduler Security Considerations
This section describes the various scheduler security considerations.

Scheduler Security
The Scheduler application uses basic authentication to authenticate users and allow
access to the requested resources based on authorization. Only valid users can access
the Scheduler Console and the REST resources. The Scheduler accesses BDI process
flows using basic authentication.

Users need to belong to one of these roles:

■ Admin (assigned to BdiSchedulerAdminGroup in WebLogic Server)

■ Operator (assigned to BdiSchedulerOperatorGroup in WebLogic Server)

■ Monitor (assigned to BdiSchedulerMonitorGroup in WebLogic Server)

Only authorized users with a specific role are allowed to access certain functionality in
the Scheduler Console.

Users with the Admin role have access to all the functions in Scheduler. Users with the
Operator role have limited authorizations to use only certain functions. Users with the
Monitor role only have view/read-only access to Scheduler Console.

Table 5–2 Scheduler Functions and Role Permissions

Function Admin Role Operator Role Monitor Role

View and search Yes Yes Yes

Create schedule Yes No No

Edit schedule Yes No No

Delete schedule Yes No No

Manual run schedule Yes Yes No

Disable schedule Yes Yes No

Scheduler Operational Considerations

Scheduler 5-23

Scheduler Operational Considerations
This section describes the various Scheduler operational considerations.

Users Roles for Monitoring and Administration
The Scheduler application is secured with role based security authorization. It is
recommended to use separate users for Monitor, Operator, and Admin roles.

Monitoring Schedules
Schedules and executions can be effectively monitored using Scheduler Console. The
console provides detailed action execution log and log files for each of the schedules
that can be used to verify the runtime executions of schedules and related information.

Schedule Action Execution Log
Each schedule execution contains the Schedule Action Execution Log that provides
descriptive information on the scheduled run or manual run of the schedule. The
Schedule Action Execution Log provides information as follows.

For example, for a successful execution of schedule ItemHdr_Fnd_From_RMS_
Schedule at the scheduled frequency, and action that triggers the process flow
ItemHdr_Fnd_ProcessFlow_From_RMS, the Schedule Action Execution Log will be:

In case of an exception (for example, a connection error when invoking a process
flow), the action execution log will be:

The previous action execution log examples indicate async actions. For sync actions,
the action execution log also shows when the schedule action started and when it
completed, which is particularly useful for a long running action for which the
Scheduler waits for the response until completion. For example,

Enable schedule Yes Yes No

Table 5–2 (Cont.) Scheduler Functions and Role Permissions

Function Admin Role Operator Role Monitor Role

Note: The Action Response shows the value that the schedule action
DSL finally returns after completion.

Scheduler Operational Considerations

5-24 Oracle Retail Job Orchestration and Scheduler Implementation Guide

Scheduler Log Files
Each schedule has its own log file. For example, a schedule named Store_Fnd_From_
RMS_Schedule will have its log file named Store_Fnd_From_RMS_Schedule.log.

The log file contains detailed information on schedule executions which can be
scheduled runs or manual runs, logs of actions such as disabling and enabling the
schedule, action log on schedule updates such as change in schedule frequency, and, in
case of any exceptions, the exception stack trace.

Users can use the following keywords to search for specific information in the
schedule log file.

Table 5–3 Schedule Log File Keyword Descriptions

Keyword Description

ScheduleId The primary key Id of schedule.

ScheduleName The schedule name.

ScheduleExecutionId The execution Id of schedule run instance.

Action Execution Begin Indicates the start of the log when schedule action
begins.

Action Execution End Indicates the end of the log when schedule action
ends. The log of the schedule action execution can be
found between the two strings: ***Schedule Run:

Action Execution Begin*** and ***Schedule Run:
Action Execution End***

For manual run, it will be ***Manual Run:

Action Execution Begin*** and ***Manual Run: Action
Execution End***

Action execution exception The detailed exception message and stacktrace will be
shown following this string, when an exception has
occurred in schedule action execution.

Maintaining Historical Schedule Executions
As the schedules run, schedule execution records are stored in the BDI_SCHEDULE_
EXECUTION table.

This table will grow larger as the number of schedule executions increase. It is
recommended to periodically purge historical schedule executions from the table that
are older and no longer necessary, and only retain recent schedule executions of a
particular period, say for the last one month to now. This will help keep the table size
within certain limits and prevent database growth.

Scheduler Customization

Scheduler 5-25

Scheduler Customization
This section describes the various Scheduler customizations.

Seed Data Reload
The SQL script containing the seed data schedule definitions is located in the
jos-scheduler-home/setup-data/dml folder.

During the initial deployment of Scheduler application, seed data schedules are
loaded into schedule definition table and the corresponding schedules are created.

If the Scheduler application must be redeployed and the seed data schedules must be
reloaded during the redeployment (that is, to reset the schedules to the initial state as
per seed data), set the LOADSEEDDATA column in BDI_SYSTEM_OPTIONS table to
TRUE, and un-deploy and redeploy the application.

Note: The above redeployment procedure will reset the current
schedule definitions (that is, existing schedules and any changes will
be deleted) and the schedules will be recreated as per seed data
definitions. Use this option with caution and only when absolutely
necessary.

Customizing Seed Data Schedules
By default, all BDI seed data schedules are scheduled to run daily, starting at midnight
(each schedule running with a gap of 5 minutes). The user can edit the seed data and
add new schedules to be loaded during deployment by updating the seed data SQL
script and adding corresponding schedule action scripts in the bdi-scheduler-home
install directory before starting the installation.

Seed data sql file: jos-scheduler-home/setup-data/dml/seed-data.sql

Schedule Action dsl files: jos-scheduler-home/setup-data/dsl

An insert statement for a schedule seed data definition will look like below (SQL for
Oracle database):

INSERT INTO BDI_SCHEDULE_DEFINITION (schedule_id, schedule_name, schedule_
group, schedule_description, schedule_status, schedule_start_datetime,
schedule_type, schedule_frequency, schedule_notification, schedule_
notification_email, schedule_action_type, schedule_action_definition)
VALUES (7, 'InvAvailStore_Tx_From_RMS_Schedule', 'Inventory', 'Schedule
created from seed data. This schedule calls process flow: InvAvailStore_
Tx_ProcessFlow_From_RMS.', 'ACTIVE', TIMESTAMP '2016-03-12 00:30:00',
'SIMPLE', 'DAILY', 'ON_SUCCESS,ON_ERROR', 'user@example', 'ASYNC',
'InvAvailStore_Tx_From_RMS_Schedule_Action.sch')

Note: When adding or editing schedule definitions in seed data to be
loaded at application startup, all of these fields (as shown in the
previous SQL statement) are required fields to create a schedule at
startup.

■ schedule_id should be a unique number for each schedule.

■ schedule_name should be unique.

Scheduler Customization

5-26 Oracle Retail Job Orchestration and Scheduler Implementation Guide

■ schedule_status needs to be ACTIVE for the schedule to be created and active.

■ schedule_type should be SIMPLE with any of the schedule_frequency values
mentioned above. Advanced schedule (calendar schedules with complex cron
expression) is not supported through seed data during deployment.

■ schedule_start_datetime:

Must be in the format yyyy-mm-dd hh:mm:ss

For example, 2016-01-01 00:00:00, 2016-01-01 18:30:00

■ schedule_frequency:

Valid values are: DAILY, HOURLY, WEEKLY, MONTHLY, WEEKDAY, WEEKEND,
SATURDAY, SUNDAY, FIRSTDAYOFMONTH, LASTDAYOFMONTH, ONCE

■ schedule_notification:

Valid values are: ON_START, ON_SUCCESS, ON_ERROR (separate multiple
values by comma)

■ schedule_email:

Valid e-mail id for notification (separate multiple e-mails by comma). E-mail is
required if a schedule_notification is specified.

■ schedule_action_type:

Valid values are (based on the action specified): ASYNC or SYNC

■ schedule_action_definition in seed data refers to the name of the corresponding
schedule action DSL file (this will get loaded at startup).

Each schedule should have corresponding schedule action DSL script defined.
This will be the action that gets executed when the schedule runs.

To load the schedule action DSL during deployment, add the schedule action DLS file
under bdi-scheduler-home/setup-data/dsl with file name convention: <Schedule Name>_
Action.sch.

For example, for adding a new schedule named Schedule_1, add schedule action DSL
script Schedule_1_Action.sch. During deployment, Scheduler will create Schedule_1 and
update the schedule definition with the action script from the corresponding file
Schedule_1_Action.sch.

Customizing Schedule Actions
The seed data schedules in Scheduler are the schedules that call the JOS process flows
provided out-of-the-box. The Schedule Actions define the REST calls to the JOS
process flows.

In an enterprise implementation, there will be requirements to schedule batch
processes, any recurring jobs or activities that are not BDI process flows. There can also
be existing batch processes or services that need to be scheduled.

The Scheduler can be used for such scheduling requirements by defining appropriate
Schedule Action to invoke the services.

Scheduler can be used to schedule RESTful services and, as the Schedule Action is a
DSL based on Groovy, valid Groovy or Java code can also be used within the action
part that will be executed by the Scheduler based on the defined schedule.

 The syntax for Schedule Action is as follows.

Scheduler Troubleshooting

Scheduler 5-27

The following Schedule Action syntax specifies how a REST service can be called from
Scheduler (assuming the REST resource does not require any authentication). The
response from the REST service will be treated as a string.

This is a simple approach for scheduling existing and new services that can be exposed
as REST services.

The Schedule Action syntax to call a REST service with authentication and with the
base URL configured in System Options as follows.

The externalVariables is the name of the variable used internally by the Scheduler to
access system options parameters. Any parameters (key-values) configured in System
Options can be accessed using the notation
externalVariables.<my-system-option-parameter>

Admin users can use the System Setting RESTful service to add or update system
options parameters, and setting up credentials (stored in wallet) for any authentication
to be used by the application. Refer to Appendix D for details on the System Setting
REST resources.

In the above example, the user can add system option parameters named
myRESTServiceBaseUrl with the REST resource base URL value (for example,
http://<myserverhost>:<port>/myapp) and myRESTServiceBaseUrlUserAlias, which
will be the alias name to be used for authentication and the value of this parameter
should be GET_FROM_WALLET:GET_FROM_WALLET to indicate that the
corresponding credentials for the alias need to be obtained from the wallet during
runtime by the application.

Scheduler Troubleshooting
Any failure in schedule execution can be analyzed in the Scheduler application by
checking the Scheduler log files for the corresponding schedule.

If a schedule execution is FAILED due to an exception response from process flow,
then the details of the corresponding process flow execution instance, the exception
details, and any stack trace can be viewed in the corresponding process flow logs
using Process Flow Admin console for further troubleshooting.

Note: The schedule execution where a JOS process flow is called is
only a trigger for the process flow execution, so the actual execution of
process flow and the status and logs thereof can only be viewed in the
JOS Process Flow Admin console.

Scheduler Known Issues

5-28 Oracle Retail Job Orchestration and Scheduler Implementation Guide

Scheduler Known Issues
Scheduler Console provides a calendar widget for datetime fields that is supported
only by Chrome browser. The latest version of the Chrome browser is recommended
for access to the Scheduler Console.

If any other browser is used that does not support the calendar widget for the datetime
input, the datetime fields may appear as a text box. Users can enter the datetime input
as text, but the value should be in the format of 'yyyy-MM-ddTHH:mm', for example,
2016-01-01T20:00. There is no loss of functionality due to this limitation however.

6

Use Cases 6-1

6Use Cases

This chapter provides details about the following use cases.

Creating Job Admin Batch Jobs
The following steps outline the procedure for creating a batch job in Job Admin.

1. Download JosJobAdmin16.0.0ForAll16.x.xApps_eng_ga.zip and unzip the file.

2. Create job XML files using Java batch specification. See the following Job
XMLsample.

3. Copy job XML files to jos-job-home/setup-data/META-INF/batch-jobs folder.

4. Copy jar file that contains code related to jobs in jos-job-home/lib folder.

5. Run the deployer script in jos-job-home/bin folder.

Sample Job XML
Here is sample Job XML that runs the ls shell command.

Passing Job Parameters
Job parameters can be passed to a shell script from the job using the following syntax
in the job.

Creating Job Admin Batch Jobs

6-2 Oracle Retail Job Orchestration and Scheduler Implementation Guide

If the following parameters are entered in the Job Admin UI during the launching of
the above job, the following command will be run by the job.

Job Parameters: param1=-a,param2=-l

Command executed: ls -a -l

Passing System Options
System options can be passed to a shell script from the job using the following syntax
in the job.

If the following system option is set in the Job Admin UI, the following command will
be run by the job.

System Option: dir=/home/batch

Command executed in the working directory /home/batch.

Passing System Properties
Java system properties can be passed to a shell script from the job using the following
syntax in the job.

Creating Job Admin Batch Jobs

Use Cases 6-3

If the following system property is set in the JVM for Job Admin, the following
command will be run by the job.

System Property: -DbatchDir=/home/batch

Command executed in the working directory /home/batch.

Chaining Multiple Jobs
For running multiple jobs that must run in sequence (single flow), create a DSL to
chain the jobs.

Sample Process Flow
The following process flow runs two jobs, jobA and jobB in sequence.The activity
AbcActivty starts jobA by calling a REST endpoint in Job Admin. The activity
AbcStatusActivity calls a REST endpoint in Job Admin to check the status of the jobA.
It waits until the job is complete or failed. This is a standard pattern for running a
batch job. After jobA is complete, the process flow engine runs the jobB.

process {
name "AbcProcess"
var ([a:"b", c:"d", e: 5])

begin{
 action{
 println "$activityName Load variables"
 println "Access externalVariables=$externalVariables"
 return "okay"
 }
 on "okay" moveTo "AbcActivity"
}

activity{
 name "AbcActivity"
 action{
startOrRestartJob(externalVariables["jobAdminUrl"],"JobA",
externalVariables["jobAdminUrlUserAlias"])
 "okay"
 }
 on "okay" moveTo "AbcStatusActivity"
on "error" moveTo "ErrorActivity"
}

Creating Split Flows

6-4 Oracle Retail Job Orchestration and Scheduler Implementation Guide

activity{
 name "AbcStatusActivity"
 action{
waitForJobCompletedOrFailed("AbcActivity",externalVariables["jobAdminUrl"] +
"/resources/batch/jobs/JobA/" + processVariables["jobExecutionId"],
externalVariables["jobAdminUrlUserAlias"])
 "okay"
 }
 on "okay" moveTo "DefActivity"
}

activity{
 name "DefActivity"
 Action{
startOrRestartJob(externalVariables["jobAdminBaseUrl"],"JobB",
externalVariables["jobAdminUrlUserAlias"])
"okay"
 }
 on "okay" moveTo "DefStatusActivity"
}

activity{
 name "DefStatusActivity"
 action{
waitForJobCompletedOrFailed("DefActivity",externalVariables["jobAdminUrl"] +
"/resources/batch/jobs/JobB/" + processVariables["jobExecutionId"],
externalVariables["jobAdminUrlUserAlias"])
"okay"
 }
 on "okay" moveTo "end"
}
 activity{
 name "ErrorActivity"
 action{
 println "$activityName This is error activity"
 return "okay"
 }
 on "okay" moveTo "end"
}

end{
 action{
 println "Got to end"
 return "COMPLETED"
 }
}
}

Creating Split Flows
The main flow must fork other flows. Use the POST method to start a process flow
from another process flow.

Creating Split Flows

Use Cases 6-5

Figure 6–1 Split Flows

Sample Split Flow
In this sample flow, the activity GhiProcessActivity posts a request to the process flow
application to start a new process flow GhiProcess and the main flow continues with
rest of the activities. The sub-flow runs independently of the main flow.

Main Flow
process {
name "DefProcess"

begin{
 action{
 }
 on "okay" moveTo "GhiProcessActivity"
}

activity{
 name "GhiProcessActivity"
 action {
(POST[externalVariables.processFlowAdminBaseUrl +
"/resources/batch/processes/operator/ProcessGhi"]
]^externalVariables.processFlowAdminBaseUrlUserAlias)
 "okay"
 }
 on "okay" moveTo "DefActivity"
}

activity{
 name "DefActivity"
 action{
"okay"

 on "okay" moveTo "end"
}

end{
 action{
 return "COMPLETED"
 }
}
}

Creating Split and Join Flows

6-6 Oracle Retail Job Orchestration and Scheduler Implementation Guide

Sub Flow
process {
name "GhiProcess"

begin{
 action{
 }
 on "okay" moveTo "GhiActivity"
}

activity{
 name "GhiActivity"

 action{
//do something here
 }
 on "okay" moveTo "end"
}

end{
 action{
 return "COMPLETED"
 }
}
}

Creating Split and Join Flows
Process flow Abc starts process flow Def and Xyz. Process flow Abc must wait until
Def and Xyz process flows are complete. The activity AbcActivity waits until
DefProcess and XyzProcess are complete. Use waitForProcessInstancesToReachStatus
method to wait for other flows to complete.

Figure 6–2 Split and Join Flows

Sample Split and Join Flow
process {
name "AbcProcess"

begin{
 action{
"okay"

Creating Split and Join Flows

Use Cases 6-7

 }
 on "okay" moveTo "DefAndXyzActivity"
}

activity{
 name "DefAndXyzActivity"
 action {
def defExecution = ((POST[externalVariables.processFlowAdminBaseUrl +
"/resources/batch/processes/operator/ProcessDef"]
]^externalVariables.processFlowAdminBaseUrlUserAlias) as
ProcessExecutionIdsVo.ProcessExecutionIdVo)
processVariables[‘processDefExecution’] = defExecution.executionId
def xyzExecution = ((POST[externalVariables.processFlowAdminBaseUrl +
"/resources/batch/processes/operator/ProcessXyz"]
]^externalVariables.processFlowAdminBaseUrlUserAlias) as
ProcessExecutionIdsVo.ProcessExecutionIdVo)
processVariables[‘processXyzExecution’] = xyzExecution.executionId
 "okay"
 }
 on "okay" moveTo "AbcActivity"
}

activity{
 name "AbcActivity"
 Action{
waitForProcessInstancesToReachStatus([processVariables[‘processDefExecution’],
processVariables[‘processXyzExecution’]], PROCESS_COMPLETED, LOGICAL_AND)
"okay"
 }
 on "okay" moveTo "end"
}

end{
 action{
 println "Got to end"
 return "COMPLETED"
 }
}
}

DefProcess Flow
process{
name "DefProcess"

begin{
 action{

 }
 on "okay" moveTo "defActivity"
}

activity{
 name "defActivity"
 action{
//do something here
}
 on "okay" moveTo "end"
}

Creating a Join Flow with Other Flows

6-8 Oracle Retail Job Orchestration and Scheduler Implementation Guide

end{
 action{
 "COMPLETE”
 }
}
}

XyzProcess Flow
process{
name "XyzProcess"

begin{
 action{

 }
 on "okay" moveTo "xyzActivity"
}

activity{
 name "xyzActivity"
 action{
 //do something here
}on "okay" moveTo "end"
}

end{
 action{
 "COMPLETE”
 }
}
}

Creating a Join Flow with Other Flows
Process flow Def and Process flow Xyz run independently. Process flow Abc has to
wait until process Def and Xyz are complete. Use waitForProcessNamesToReachStatus
to wait for other processes to complete.

Figure 6–3 Join Flows with Other Flows

Sharing Data Between Process Flows

Use Cases 6-9

Sample Join Flow
process {
name "AbcProcess"

begin{
 action{
 }
 on "okay" moveTo "AbcActivity"
}

activity{
 name "AbcActivity"
 action{
waitForProcessNamesToReachStatus([‘DefProcess’:2, ‘XyzProcess’:2],
now().minusDays(1), PROCESS_COMPLETED, LOGICAL_AND, LAST_EXECUTION_STATUS)
"okay"
 }
 on "okay" moveTo "end"
}

end{
 action{
 return "COMPLETED"
 }
}
}

Sharing Data Between Process Flows
Process flow Abc must share data with process flow Def.

Use persistGlobalUserData and findGlobalUserData APIs to share information.

Sample Flow that Shares Information with Other Flows
process {
name "AbcProcess"
begin{
 action{
 }
 on "okay" moveTo "AbcActivity"
}
activity{
 name "AbcActivity"
 action{
// Persist date as String
persistGlobalUserData(“workDayStart”, now().minusDays(1).toString())
"okay"
 }
 on "okay" moveTo "end"
}
end{
 action{
 return "COMPLETED"
 }
}
}

process {

Creating Schedules in Scheduler

6-10 Oracle Retail Job Orchestration and Scheduler Implementation Guide

name "DefProcess"
begin{
 action{
 }
 on "okay" moveTo "DefActivity"
}
activity{
 name "DefActivity"
 action{
/fetch the date from db
def workDayStartString = findGlobalUserData("workDayStart")
LocalDateTime workDayStartDateObject = LocalDateTime.parse(workDayStartString)
log.debug "WorkDayStart Global data asString(${workDayStartString}) and
asLocalDateTime(${workDayStartDateObject})"
"okay"
 }
 on "okay" moveTo "end"
}
end{
 action{
 return "COMPLETED"
 }

}

Creating Schedules in Scheduler
Complete the following steps to create a schedule in Scheduler.

1. Download JosScheduler16.0.023ForAll16.x.xApps_eng_ga.zip and unzip the file.

2. Set up the schedule for the above created process through seed data or the UI. See
the following seed data sample.

3. Create DSL file for action. DSL is Groovy based and Groovy or Java code can be
used in Action block. See the following DSL sample.

4. Copy DSL file to jos-scheduler-home/setup-data/dsl folder.

5. Run the deployer script from jos-scheduler-home/bin folder.

Using Sample Seed Data to Create a Schedule
Here are important fields in seed data that must be considered for the schedule being
created.

■ schedule_type - SIMPLE. if advanced scheduling is required, it must be created
using Scheduler UI.

■ schedule_start_datetime - Specify the date and time when to start the schedule, for
example, '2016-11-22 10:20:00'

■ schedule _frequency - Valid values are: DAILY, HOURLY, WEEKLY, MONTHLY,
WEEKDAY, WEEKEND, SATURDAY, SUNDAY, FIRSTDAYOFMONTH,
LASTDAYOFMONTH, ONCE

■ schedule_action_type - ASYNC (asynchronous) or SYNC (synchronous)

■ schedule_action_definition - Name of the schedule action DSL file

INSERT INTO BDI_SCHEDULE_DEFINITION (schedule_id, schedule_name, schedule_group,
schedule_description,
schedule_status, schedule_start_datetime, schedule_type, schedule_frequency,

Creating Schedules in Scheduler

Use Cases 6-11

schedule_notification,
schedule_notification_email, schedule_action_type, schedule_action_definition)
VALUES (1, 'Schedule1',
'Schedules', 'Schedule created from seed data. This schedule calls process flow:
AbcProcess.',
'ACTIVE', TIMESTAMP '2016-11-22 00:00:00', 'SIMPLE', 'DAILY', 'ON_SUCCESS,ON_
ERROR',
'admin@example.com', 'ASYNC', 'Abc.sch')

Scheduling an Action DSL
Each schedule has a corresponding schedule action DSL. This will be the action that is
executed when the schedule runs.

Sample Action DSL
The following schedule action starts AbcProcess flow by sending a POST request to
Process Flow.

action {
(POST[externalVariables.processFlowAdminBaseUrl +
"/resources/batch/processes/operator/AbcProcess"]^externalVariables.processFlowAdm
inBaseUrlUserAlias) as String

Creating Schedules in Scheduler

6-12 Oracle Retail Job Orchestration and Scheduler Implementation Guide

7

Pre-Implementation Considerations 7-1

7Pre-Implementation Considerations

This chapter describes the pre-implementation considerations.

Thread Pool Size in WebLogic
If many concurrent schedules/process flows/jobs are going to run, increase the thread
pool size in WebLogic. This value can be changed for a managed server from the
WebLogic Admin Console.

■ Servers -> Server Name -> Tuning -> Advanced -> Self Tuning Thread Maximum
Pool Size

Database Connection Pool Size in WebLogic
If many concurrent jobs are going to run, increase the maximum capacity of the
connection pool for the data sources that are associated with the jobs. The default
value is 15. This value can be changed from the WebLogic Admin Console.

■ Services -> Data Sources -> DataSource -> Connection Pool -> Maximum Capacity

Database Connection Pool Size in WebLogic

7-2 Oracle Retail Job Orchestration and Scheduler Implementation Guide

8

High Availability Considerations 8-1

8High Availability Considerations

This chapter provides information about high availability considerations.

About High Availability
Modern business application requirements are classified by the abilities that the
system must provide. This list of abilities, such as availability, scalability, reliability,
scalability, audit ability, recoverability, portability, manageability, and maintainability,
determine the success or failure of a business.

With a clustered system many of these business requirement abilities are addressed
without having to do much development work within the business application.
Clustering directly addresses availability, scalability, and recoverability requirements,
which are very attractive to a business. In reality though it is a trade off, as clustered
systems increase complexity and are normally more difficult to manage and secure,
and so one should evaluate the pros and cons before deciding to use clustering.

Oracle provides many clustering solutions and options; those relevant to JOS are
Oracle database cluster (RAC) and WebLogic Server clusters.

WebLogic Server Cluster Concepts
A WebLogic Server cluster consists of multiple WebLogic Server managed server
instances running simultaneously and working together to provide increased
scalability and reliability. A cluster appears to clients to be a single WebLogic Server
instance. The server instances that constitute a cluster can run on the same machine or
be located on different machines. You can increase a cluster's capacity by adding
additional server instances to the cluster on an existing machine, or you can add
machines to the cluster to host the incremental server instances. Each server instance
in a cluster must run the same version of WebLogic Server.

In an active-passive configuration, the passive components are only used when the
active component fails. Active-passive solutions deploy an active instance that handles
requests and a passive instance that is on standby. In addition, a heartbeat mechanism
is usually set up between these two instances together with a hardware cluster (such
as Sun Cluster, Veritas, RedHat Cluster Manager, and Oracle CRS) agent so that when
the active instance fails, the agent shuts down the active instance completely, brings up
the passive instance, and resumes application services.

In an active-active model all equivalent members are active and none are on standby.
All instances handle requests concurrently.

An active-active system generally provides higher transparency to consumers and has
a greater scalability than an active-passive system. On the other hand, the operational

Scaling JOS

8-2 Oracle Retail Job Orchestration and Scheduler Implementation Guide

and licensing costs of an active-passive model are lower than that of an active-active
deployment.

See the Oracle Fusion Middleware Using Clusters for Oracle WebLogic Server
documentation for more information:
http://download.oracle.com/docs/cd/E15523_01/web.1111/e13709/toc.htm

Scaling JOS
JOS needs to be scaled horizontally to handle a large number of concurrent jobs. Single
instances of Scheduler and Process Flow can be used since they are not resource
intensive. JOS Admin can be very resource intensive. To handle large number of
concurrent jobs, multiple instances of JOS Admin can be used to distribute jobs.
WebLogic Server cluster that consists of multiple managed server instances provide
horizontal scalability for JOS Admin.

JOS on Cluster
As recommended above, for scaling JOS for large number of jobs, JOS components
should be deployed to cluster. Following are some considerations to be taken into
account when deploying JOS on a cluster.

Logging

Issue
The System Logs tab in Scheduler, Process Flow, and JOS Admin UIs show only logs
from the server that UI is connected to.

Solution
Use a common log directory for each of the JOS components. JOS components use the
following directory structure for creating log files.

$DOMAIN_HOME/logs/<server name>/<app name>
Example

$DOMAIN_HOME/logs/server1/jos-rms-job-admin._war
$DOMAIN_HOME/logs/server2/jos-rms-job-admin._war
1. Create a common log directory (for example; /home/logs/jobadmin) for each JOS

application.

2. Create symbolic links to the common log directory for each server using the below
command from $DOMAIN_HOME/logs directory.

ln -s /home/logs/jobadmin
 server1/jos-rms-job-admin._war
ln -s /home/logs/jobadmin
 server2/jos-rms-job-admin._war

3. If the directory $DOMAIN_HOME/logs/<server>/<app> already exists, it must
be deleted before symbolic link is created.

4. The application must be restarted after symbolic link is created. When WebLogic
managed servers are in different machines a shared network disk has to be used.

JOS on Cluster

High Availability Considerations 8-3

Update Log Level

Issue
When the log level is updated through UI or REST end point, it updates the log level
only on the server it is connected to.

Solution
Log level must be updated through the URL of all the nodes in the cluster using UI or
REST endpoint.

Example

http://server1:port1/jos-rms-batch-job-admin/system-setting/system-logs
http://server2:port2/jos-rms-batch-job-admin/system-setting/system-logs

Create/Update/Delete System Options

Issue
When system options are created/updated/deleted using UI or REST end point, the
changes are reflected only on the server that client is connected to.

Solution
The reset-cache REST endpoint must be invoked on the other nodes in the cluster for
that application in JOS.

Example

http://server1:port1/jos-rms-batch-job-admin/system-setting/reset-cache

Create/Update/Delete System Credentials

Issue
When system credentials are created/updated/deleted using REST endpoint, the
credentials are created/updated/deleted only on the server that client is connected to.

Solution
The REST endpoint that creates/updates/deletes credentials must be invoked on all
the nodes in the cluster for that application in JOS.

Example
http://server1:port1/jos-rms-batch-job-admin/system-setting/system-credentials
http://server2:port2/jos-rms-batch-job-admin/system-setting/system-credentials

Scheduler Configuration Changes for Cluster
1. Two data sources need to be created for scheduler on cluster in the Admin

Console.

■ Create a non-XA data source (SchedulerTimerDs) pointing to the schema that
contains the WEBLOGIC_TIMERS table. This is the schema with the WLS
suffix, created using RCU.

Specify this schema in the scheduling tab of cluster configuration in WebLogic
console.

JOS on Cluster

8-4 Oracle Retail Job Orchestration and Scheduler Implementation Guide

■ Create a non-XA data source (SchedulerRuntimeDs) pointing to schema that
contains ACTIVE table. This is the schema with the WLS_RUNTIME suffix,
created using RCU.

 Specify this schema in the Migration tab of cluster configuration in the
WebLogic console.

Perform the following steps to configure the data sources:

a. Specify the data source for schedule timers in the Admin Console.

b. Login to Admin Console.

c. Click Lock & Edit (For Production Mode only).

d. Click Environment -> Clusters.

e. Click the cluster name.

f. Click Scheduling.

g. Select SchedulerTimerDs for the Data Source For Job Scheduler field.

h. Click Save.

i. Click Migration.

j. Select Migration Basis: DataBase, and Data Source For Automatic Migration:
SchedulerRuntimeDs.

k. Click Save.

l. Verify Auto Migration Table Name populated with ACTIVE.

m. Click Activate Changes.

2. Update the weblogic-ejb-jar.xml in WEB-INF folder of the
bdi-scheduler-ui-<version>.war in <bdi-home>/dist folder with the contents
shown (The entry in red is the change from the existing contents of the file)

Instructions to update

a. cd dist

b. jar xf bdi-scheduler-ui-<version>.war WEB-INF/weblogic-ejb-jar.xml

c. Update the WEB-INF/weblogic-ejb-jar.xml with the contents below

d. jar uf bdi-scheduler-ui-<version>.war WEB-INF/weblogic-ejb-jar.xml

e. Delete dist/WEB-INF folder

f. Deploy the scheduler application

<weblogic-ejb-jar xmlns="http://xmlns.oracle.com/weblogic/weblogic-ejb-jar"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <security-role-assignment>
 <role-name>AdminRole</role-name>
 <principal-name>BdiSchedulerAdminGroup</principal-name>
 </security-role-assignment>

 <security-role-assignment>
 <role-name>OperatorRole</role-name>
 <principal-name>BdiSchedulerOperatorGroup</principal-name>
 </security-role-assignment>
 <security-role-assignment>
 <role-name>MonitorRole</role-name>

JOS on Cluster

High Availability Considerations 8-5

 <principal-name>BdiSchedulerMonitorGroup</principal-name>
 </security-role-assignment>
 <timer-implementation>Clustered</timer-implementation>
</weblogic-ejb-jar>

JOS on Cluster

8-6 Oracle Retail Job Orchestration and Scheduler Implementation Guide

9

Deployment Architecture 9-1

9Deployment Architecture

This chapter provides information about the following deployment architectures.

JOS and BDI Deployment Architecture for RMS
This diagram shows the recommended deployment architecture for RMS that uses
both JOS and BDI. Here JOS and BDI use the same batch schema as they are deployed
in the same WebLogic domain. However, they use different infrastructure schemas.

Figure 9–1 RMS JOS and BDI Deployment Architecture

JOS Deployment Architecture
This diagram shows a simple deployment architecture for JOS. In this architecture, JOS
Job Admin, JOS Process Flow, and JOS Scheduler are deployed in separate managed
servers in a WebLogic domain. This is the recommended architecture if batch jobs are
simple and not resource intensive.

JOS Scalable Deployment Architecture

9-2 Oracle Retail Job Orchestration and Scheduler Implementation Guide

Figure 9–2 JOS Deployment Architecture

JOS Scalable Deployment Architecture
This diagram shows scalable deployment architecture for JOS. In this architecture, Job
Admin is deployed in multiple managed servers in a cluster. Process Flow and
Scheduler are deployed in their own managed servers. This is the recommended
architecture if batch jobs are resource intensive. This architecture allows Job Admin to
be scaled horizontally and jobs can be distributed.

Figure 9–3 JOS Scalable Deployment Architecture

10

Performance Considerations 10-1

10Performance Considerations

This chapter describes performance considerations.

CPU and Memory Considerations
The following is a list of CPU and memory considerations.

■ As JOS application memory requirements are low, 1 GB should be sufficient. If you
are running shell scripts from JOS, you must ensure that whatever memory is
required by your scripts is available in the machine.

■ CPU depends on the number of concurrent jobs you plan to run. If you plan to run
many process flows concurrently, you must allocate at least that many threads to
the WebLogic thread pool.

■ JavaBatch automatically throttles concurrent jobs based on how many threads are
available to the process.

CPU and Memory Considerations

10-2 Oracle Retail Job Orchestration and Scheduler Implementation Guide

11

OAuth 2.0 11-1

11OAuth 2.0

OAuth 2.0 is the industry-standard protocol for authorization. The OAuth 2.0
authorization framework enables a third-party application to obtain limited access to
an HTTP service, either on behalf of a resource owner by orchestrating an approval
interaction between the resource owner and the HTTP service, or by allowing the
third-party application to obtain access on its own behalf.

OAM provides out of the box OAuth Services, which allows a Client Application to
access protected resources that belong to an end-user (that is, the Resource Owner).

OAuth 2.0 Architecture Diagram

Figure 11–1 OAuth 2.0 Architecture Diagram

OAuth 2.0 Concepts

Business to Business (2-legged flow)
■ It usually represents an application that calls another application or service

without end user intervention.

■ A client (Business Client application) will make a call to a service, business service
(in OAuth spec, a resource server), and request some business information,
passing the access token.

OAuth 2.0 Use Case Flow

11-2 Oracle Retail Job Orchestration and Scheduler Implementation Guide

■ Since there is no end user intervention, the client is pre-authorized to have access
to the resource.

OAuth 2.0 Use Case Flow

Figure 11–2 OAuth 2.0 Use Case Flow

OAuth 2.0 Terms
■ Resource Server – The server hosting the protected resource.

■ Resource Owner – An entity capable of granting access to a protected resource.

■ Client – An application making protected resource requests on behalf of the
resource owner. It can be a server-based, mobile or a desktop application.

■ Authorization Server – The server issuing access tokens to the clients after
successfully authenticating the resource owner and obtaining authorization.

JOS OAuth 2.0 Architecture
JOS uses OAuth 2-legged flow i.e. business to business flow. OAM provides OAuth
services. OHS is Oracle HTTP server that acts as a listener to incoming requests and
route them to appropriate service.

OAuth 2 Service Provider

OAuth 2.0 11-3

Figure 11–3 JOS OAuth 2.0 Architecture

OAuth 2 Service Provider
BDI/JOS services can be accessed using OAuth 2.0. Use the information provided in
Service Consumer section on how to access BDI/JOS services using OAuth 2.0.

Service providers that want to expose services using OAuth 2.0 has to go through the
below steps.

Service Provider Configuration
Service provider needs an OAuth identity domain to register resource server
information and client profile information so that clients can access the services using
OAuth 2.0 protocol.

OAuth 2.0 Service provider distribution includes a configuration file
"oauth-configuration-env-info.properties" and install script "oauth-config.sh" to create
identity domain, register resource server and client profile information.

Use OAuth 2 Installation Guide to configure a service provider in OAM.

Scopes
Scopes allow certain service endpoints to be restricted to clients.

Here are the available scopes.

■ AdminAccessScope

■ OperatorAccessScope

■ MonitorAccessScope

Configuration of scopes for service provider
Service provider needs to configure scope of access for all resource servers in
"oauth-configuration-env-info.properties" file.

Here is a sample configuration for scope in service provider. With this configuration,
clients can access only BDI Process Flow end points permitted for operator. Multiple
scopes can be specified as a comma separated list for a resource server.

OAuth 2 Service Provider

11-4 Oracle Retail Job Orchestration and Scheduler Implementation Guide

oauth-configuration-env-info.oauth-resource-server-interface.resourceServerName=bd
i-process-flow,jos-rms-batch-job-admin

oauth-configuration-env-info.oauth-resource-server-interface.bdi-process-flow.scopeN
ame=OperatorAccessScope

oauth-configuration-env-info.oauth-resource-server-interface.jos-rms-batch-job-admin.
scopeName=OperatorAccessScope,MonitorAccessScope

OHS Configuration
In cloud environment, all external HTTP requests are routed through OHS (Oracle
HTTP Server). OHS needs to be configured to add "oauth2" in the URL after root
context and forward the request to appropriate service if the request contains the
HTTP header "Authorization: Bearer <token>". This header indicates that the service is
protected by OAuth 2.0.

Use the OAuth 2.0 Installation Guide to configure OHS.

OAuth Server Public Certificate
Service provider uses OAuth server public certificate to validate the token provided in
the HTTP request.

Use instructions provided in the OAuth 2.0 Installation Guide to import OAuth server
public certificate into service provider.

OAuth 2.0 Servlet Filter
Service Provider needs to include "OAuth2ServletFilter" class in "web.xml" to intercept
HTTP requests that contain "oauth2" in the path of the URL. The following jars need to
be included in the classpath of service provider. The servlet filter validates the token
provided in the "Authorization" header and forwards to the service if token is valid.

■ oauth2-common-16.0.023.jar

■ oauth2-service-provider-api-16.0.023.jar

Add the following in "web.xml" of service provider.

<filter>
<filter-name>OAuth2ServletFilter</filter-name>
<filter-class>com.oracle.retail.integration.oauth2.provider.OAuth2ServletFilter</f
ilter-class>
 <init-param>
<param-name>oauth2.serviceProviderConfigClassName</param-name>
<param-value>com.oracle.retail.bdi.common.util.OAuth2ConfigProvider</param-value>
 </init-param>
</filter>

<filter-mapping>
 <filter-name>OAuth2ServletFilter</filter-name>
 <url-pattern>/oauth2/*</url-pattern>
</filter-mapping>

Add the below security-constraint as the last security constraint in "web.xml".

<security-constraint>
 <web-resource-collection>
 <web-resource-name>OAuth2Paths</web-resource-name>
 <url-pattern>/oauth2/*</url-pattern>

OAuth 2.0 Service Consumer

OAuth 2.0 11-5

 </web-resource-collection>
</security-constraint>

OAuth 2.0 Service Consumer
A client can access services protected by OAuth 2.0 using the following methods:

■ Use OAuth 2.0 Consumer API

■ Use Curl

Access Services using OAuth 2.0 Consumer API
OAuth 2.0 consumer API simplifies access of services protected by OAuth 2.0. The
consumer API executes the following steps:

1. Gets the token from OAM server using client id, client secret, and scope.

2. Adds "Authorization Bearer <token>" HTTP header.

3. Adds "Scope" header with configured scope.

4. Calls the service.

Consumer Configuration
1. Download OAuth2ServiceConsumer16.0.023ForAll16.0.023Apps_eng_ga.zip.

2. Unzip the downloaded archive. The "oauth2-consumer-home" directory will be
created under the current directory.

Unzip OAuth2ServiceConsumer16.0.023ForAll16.0.023Apps_eng_ga.zip

This command extracts the archive. The directories for the installation are shown.

■ ./conf/oauth2-service-consumer-config.properties

■ ./lib/oauth2-common-16.0.023.jar

■ ./lib/oauth2-service-consumer-api-16.0.023.jar

■ ./README.txt

3. Edit the oauth-service-consumer-config.properties file to create oauth2 domain
environment.

vi oauth-service-consumer-config.properties
4. Provide the following values in the properties file.

Table 11–1 Configuration Property File Values

Configuration Property Description

oauth2.default.authorizatio
nServerUrl

URL of OAuth server that issues tokens for default server

oauth2.default.scopeOfAcce
ss.*

Scope of access - *.<scope> for default server

(scope - AdminAccessScope, OperatorAccessScope,
MonitorAccessScope)

oauth2.default.scopeOfAcce
ss.headers

headers.<scope> for default server

(scope - AdminAccessScope, OperatorAccessScope,
MonitorAccessScope)

oauth2.default.scopeOfAcce
ss.jos-rms-batch-job-admin

<Root Context>.<scope> for default server

OAuth 2.0 Service Consumer

11-6 Oracle Retail Job Orchestration and Scheduler Implementation Guide

OAuth 2.0 Client Sample Code
The following sample code calls discover service of BDI Process Flow application.
Make sure that following jars are included in the classpath.

■ oauth2-common-16.0.023.jar

■ oauth2-service-consumer-api-16.0.023.jar

import javax.ws.rs.client.Client;
import javax.ws.rs.client.ClientBuilder;
import javax.ws.rs.client.WebTarget;
Import
com.oracle.retail.integration.oauth2.consumer.OAuth2RestServiceConsumerTokenAppend
er;
import com.oracle.retail.integration.oauth2.consumer.OAuth2ClientBuilder;
import com.oracle.retail.integration.oauth2.consumer.OAuth2Client;

// Code that calls service protected by OAuth 2
void callService() {
 Client client = ClientBuilder.newClient().register(new
OAuth2RestServiceConsumerTokenAppender("JosClientID", "JosClientID1", "srv1"));
 WebTarget target =
client.target("https://host:port/bdi-process-flow/resources/discover");
 String out = target.request().get().readEntity(String.class);
 System.out.println("out=" + out);
}

Access Services using Curl
Curl can be used to call a service. There are two steps for calling a service. First issue a
curl command to get the token from the authorization server and the second curl
command calls the service using the token.

Request Access Token
The following curl command can be used to request access token.

Curl -X POST -H "Authorization: <Base64 encoded credentials for Authorization
Server>" -H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8" - H
"Accept-Charset: UTF-8" -H "Connection: keep-alive" -H "Content-Length: <length>"
-d "grant_type=client_credentials&scope=<scope>" <url>
Sample Scope:

bdi-process-flow.OperatorAccessScope
See "Consumer Configuration" on page 11-5 to find various scopes of accesses.

Sample Authorization Server URL for JosDomain:

http://host:port/ms_oauth/oauth2/endpoints/JosDomainserviceprofile/tokens

Call Service
Curl -X GET -H "Authorization: Bearer <token>" - H "Scope: <scope>" <url>
Token: Token obtained using the above curl command

Scope: Scope used to obtain the token

oauth2.srv1.authorizationSe
rverUrl

URL of OAuth server that issues tokens for server "srv1"

Table 11–1 (Cont.) Configuration Property File Values

Configuration Property Description

OAuth 2.0 Service Consumer

OAuth 2.0 11-7

Sample URL: http://host:port/bdi-process-flow/oauth2/resources/discover

OAuth 2.0 Service Consumer

11-8 Oracle Retail Job Orchestration and Scheduler Implementation Guide

A

Appendix A: Scheduler REST Endpoints A-1

A Appendix A: Scheduler REST Endpoints

The Scheduler provides RESTful services to retrieve information about schedules and
to run the scheduler manually. The endpoint discover can be used to identify all
endpoints provided by the Scheduler.

REST Resource Descriptions
The following table describes the REST resources.

Table A–1 REST Resource Descriptions

REST Resource Method Description

/discover GET Lists all the available Scheduler REST resources

/batch/schedules GET Returns all the schedules in the application
(including active, inactive and disabled schedules)

/batch/schedules/acti
ve-schedules

GET Returns all active schedules

/batch/schedules/{sch
eduleName}

GET Returns the schedule definition of the specified
schedule

/batch/schedules/upc
oming-schedules/days
/{days}

GET Returns the upcoming schedules from now to next
number of {days} specified

/batch/schedules/upc
oming-schedules

GET Returns the upcoming schedules for the next one
day from now

/batch/schedules/exec
utions/{scheduleName}

GET Returns all the historical schedule executions of
the given schedule since the beginning

/batch/schedules/exec
utions/past/days/{day
s}

GET Returns the historical schedule executions of the
given schedule for past number of {days}

/batch/schedules/exec
utions/failed

GET Returns all the failed executions for all the
schedules since the beginning

/batch/schedules/exec
utions/today

GET Returns today's schedule executions starting from
midnight today (12:00 a.m.) to now

/batch/schedules/exec
utions/today/complete
d

GET Returns today's schedule executions that are either
in 'Triggered' status (for async actions) or in
'Completed' status (for sync actions), starting from
midnight today (12:00 a.m.) to now

/batch/schedules/exec
utions/today/failed

GET Returns today's schedule executions that are in
'Failed' status, starting from midnight today (12:00
a.m.) to now

REST Resource Descriptions

A-2 Oracle Retail Job Orchestration and Scheduler Implementation Guide

/batch/schedules/exec
utions/past/days/{day
s}

GET Returns schedule executions for last n days

/batch/schedules/oper
ator/run-schedule-now
/{scheduleName}

GET Runs the specified schedule, that is, executes the
Schedule Action of the schedule and returns the
Schedule Execution detail response.

This is a synchronous invocation, so client must
wait for the response.

/batch/schedules/exec
utions/time/{fromDate
Time}/{toDateTime}

GET Returns schedule executions between from and to
time

Table A–1 (Cont.) REST Resource Descriptions

REST Resource Method Description

B

Appendix B: Process Flow REST Endpoints B-1

B Appendix B: Process Flow REST Endpoints

The table in this appendix provides a description of the REST resources.

Table B–1 REST Resource Descriptions

REST Resource
HTTP
Method Description

/discover GET Lists all available endpoints

/batch/processes/operator
/{processName}

POST Start a new Process Flow execution

/batch/processes/executio
ns/{processName}

GET List Process Executions for the process name

/batch/processes/executio
ns

GET List all process execution IDs

/batch/processes/executio
ns/status/{status}

GET List all process execution IDs for the specified status

/batch/processes/executio
ns/time/{startTime}/{endTi
me}

GET List all process execution IDs for the specified time
range

/batch/processes/external-
variables

GET List external variables

/batch/processes/external-
variables

PUT Create external variables

/batch/processes/external-
variables

POST Update external variables

/batch/processes/external-
variables/{key}

DELETE Delete external variable

/batch/processes/currently
-running-processes

GET List all the currently running process flows

/batch/processes GET Get all the available process definitions

/batch/processes/{process
Name}

GET Get process DSL for the specified process

/batch/processes/executio
ns/{processName}/{process
ExecutionId}/activities/{act
ivityExecutionId}

GET Get Activity execution detail for the activity
specified

/batch/processes/executio
ns/{processName}/{process
ExecutionId}

GET Get all the activities for the process flow execution

B-2 Oracle Retail Job Orchestration and Scheduler Implementation Guide

/batch/processes/{process
Name}/activities

GET Get all the activities for the process specified

/batch/processes/operator
/{processName}/{processE
xecutionId}

POST Restart a process execution instance

/batch/processes/operator
/{processName}/resolve

POST Sets the status of process to PROCESS_FAILED

/batch/processes/{process
Name}/{processExecutionI
d}

DELETE Stops running process

/batch/processes/executio
ns

DELETE Stops all running processes

/telemetry/processes GET Returns process runtime metrics between fromTime
and toTime

Table B–1 (Cont.) REST Resource Descriptions

REST Resource
HTTP
Method Description

C

Appendix C: Job Admin REST Endpoints C-1

C Appendix C: Job Admin REST Endpoints

Batch service is a RESTful service that provides various endpoints to manage batch
jobs in Job Admin. The endpoint discover can be used to identify all endpoints
provided by Job Admin.

Table C–1 REST Resource Descriptions

REST Resource
HTTP
Method Description

/discover GET Lists all available endpoints in Job Admin

/batch/jobs GET Gets all available batch jobs

/batch/jobs/{jobName} GET Gets all instances for a job

/batch/jobs/{jobName}
/executions

GET Gets all executions for a job

/batch/jobs/executions GET Gets all executions

batch/jobs/currently-ru
nning-jobs

GET Gets currently running jobs

/batch/jobs/{jobName}
/{jobInstanceId}/executi
ons

GET Gets job executions for a job instance

/batch/jobs/{jobName}
/{jobExecutionId}

GET Gets job instance and execution for a job execution
ID

/batch/jobs/{jobName} POST Starts a job asynchronously

/batch/jobs/executions
/{jobExecutionId}

POST Restarts a stopped or failed job

/batch/jobs/executions DELETE Stops all running job executions

/batch/jobs/executions
/{jobExecutionId}

DELETE Stops a job execution

/batch/jobs/executions
/{jobExecutionId}

GET Gets execution steps with details

/batch/jobs/executions
/{jobExecutionId}/steps

GET Gets execution steps

/batch/jobs/executions
/{jobExecutionId}/steps
/{stepExecutionId}

GET Gets step details

/batch/jobs/job-def-xml
-files

GET Gets all job XML files

C-2 Oracle Retail Job Orchestration and Scheduler Implementation Guide

/telemetry/jobs GET Returns runtime job metrics between fromTime and
toTime

Table C–1 (Cont.) REST Resource Descriptions

REST Resource
HTTP
Method Description

D

Appendix D: System Setting Service D-1

D Appendix D: System Setting Service

The System Setting service is a RESTful service available in all JOS components (Job
Admin, Process Flow and Scheduler) that provides endpoints to manage the system
option parameters and the credentials to be used by the JOS. The system options are
stored in the BDI_SYSTEM_OPTIONS table.

Table D–1 REST Resource Descriptions

REST Resource
HTTP
Method Description

/system-setting/system-options GET Gets all system options from BDI_
SYSTEM_OPTIONS table

/system-setting/system-options PUT Creates a system option in BDI_
SYSTEM_OPTIONS table. Only
admin user is allowed to perform
this operation

/system-setting/system-options POST Updates a system option in BDI_
SYSTEM_OPTIONS table. Only
admin user is allowed to perform
this operation.

/system-setting/system-options/{key} DELETE Deletes a system option from BDI_
SYSETM_OPTIONS table. Only
admin user is allowed to perform
this operation.

/system-setting/system-options/{key} GET Gets a system option from BDI_
SYSTEM_OPTIONS table

/system-setting/system-logs GET Gets system logs

/system-setting/system-seed-data GET Get system seed data file

/system-setting/system-seed-data/reset-af
ter-bounce

POST Resets system seed data after
bounce

/system-setting/system-seed-data/reset-n
ow

POST Resets system seed data now

/system-setting/system-credentials GET Gets system credentials. Only
admin user is allowed to perform
this operation.

/system-setting/system-credentials PUT Gets system credentials. Only
admin user is allowed to perform
this operation.

/system-setting/system-credentials POST Gets system credentials. Only
admin user is allowed to perform
this operation.

Managing System Options Using Curl

D-2 Oracle Retail Job Orchestration and Scheduler Implementation Guide

Managing System Options Using Curl
Here are examples of curl commands to list/create/update/delete system options for
the Process Flow. These commands can be run for Job Admin and Scheduler as well.
Create/update/delete commands can only be run by an administrator.

Creating System Options
This command creates the reimappJobAdminBaseUrlUserAlias system option in the
Process Flow.

curl --user userId:password -i -X PUT -H "Content-Type:application/json"
http://server:port/bdi-process-flow/resources/system-setting/system-option
s

-d '{"key":"reimappJobAdminBaseUrlUserAlias" , "value":" GET_FROM_
WALLET:GET_FROM_WALLET "}'

Updating System Options
This command updates the reimappJobAdminBaseUrl system option in the Process
Flow.

curl --user userId:password -i -X POST -H "Content-Type:application/json"
http://server:port/bdi-process-flow/resources/system-setting/system-option
s

-d '{"key":"reimappJobAdminBaseUrl" ,
"value":"http://server:port/reim-batch-job-admin"}'

Deleting System Options
This command deletes the reimappJobAdminBaseUrl system option from the Process
Flow.

curl --user userId:password -i -X DELETE -H
"Content-Type:application/json"
http://server:port/bdi-process-flow/resources/system-setting/system-option
s

-d '{"key":"reimappJobAdminBaseUrl"}'

/system-setting/system-options/system-cr
edentials

PUT Creates system options and
corresponding credentials

/system-setting/system-options/system-cr
edentials

POST Updates system options and
corresponding credentials

/system-setting/system-options/system-cr
edentials/{key}

DELETE Deletes system options and
corresponding credentials

/system-setting/system-logs POST Updates system log level

/system-setting/reset-cache POST Resets system option cache

/system-setting/system-credentials/{key} DELETE Deletes system credentials. Only
admin user is allowed to perform
this operation.

Table D–1 (Cont.) REST Resource Descriptions

REST Resource
HTTP
Method Description

Managing Credentials Using Curl

Appendix D: System Setting Service D-3

Resetting System Options Cache
This command resets the cache for the system options, and it must be run on all the
nodes to refresh the cache.

curl --user userId:password -i -X POST
http://server:port/bdi-process-flow/resources/system-setting/reset-cache

Listing System Options
This command lists all the system options from the Process Flow.

curl --user userId:password -i -X GET -H "Content-Type:application/json"
http://server:port/bdi-process-flow/resources/system-setting/system-options

Managing Credentials Using Curl
Here are examples of curl commands to list/create/update/delete credentials for the
Process Flow. These commands can be run for Job Admin and Scheduler as well.
Create/update/delete commands can only be run by an administrator.

Creating Credentials
This command creates a credential in the Process Flow.

curl --user userId:password -i -X PUT -H "Content-Type:application/json"
http://server:port/bdi-process-flow/resources/system-setting/system-creden
tials -d '{"userAlias":" reimappJobAdminBaseUrlUserAlias",
"userName":"reimjobadmin" , "userPassword":"xyzxyz"}'

Updating Credentials
This command updates a credential in the Process Flow.

curl --user userId:password -i -X POST -H "Content-Type:application/json"
http://server:port/bdi-process-flow/resources/system-setting/system-creden
tials -d '{"userAlias":" reimappJobAdminBaseUrlUserAlias",
"userName":"reimjobadmin" , "userPassword":"wwwqqqq"}'

Deleting Credentials
This command deletes a credential from the Process Flow.

curl --user userId:password -i -X GET -H "Content-Type:application/json"
http://server:port/bdi-process-flow/resources/system-setting/system-creden
tials -d '{"key":"reimappJobAdminBaseUrl"}'

Listing Credentials
This command lists credentials from the Process Flow.

curl --user userId:password -i -X GET -H "Content-Type:application/json"
http://server:port/bdi-process-flow/resources/system-setting/system-creden
tials

Managing Credentials Using Curl

D-4 Oracle Retail Job Orchestration and Scheduler Implementation Guide

E

Appendix E: Scheduler UI Screenshots E-1

E Appendix E: Scheduler UI Screenshots

The screenshots in this appendix are part of the Scheduler User Interface.

Scheduler Summary
This is the home page that provides the overall summary of the scheduler runtime.

Note: The term today indicates the duration from midnight to now. It
lists the future schedules that are expected to run in the next 24 hours
from now. It also lists the schedule executions that have failed today
(from midnight to now).

Figure E–1 Scheduler Console Schedule Summary Tab

Manage Schedules - Schedule Executions
The Manage Schedules page displays a list of all schedules and the details of each
schedule in the Schedule Detail view and the corresponding schedule executions in the
Schedule Executions view for the schedule.

Schedule Executions

E-2 Oracle Retail Job Orchestration and Scheduler Implementation Guide

Figure E–2 Scheduler Console Manage Schedules Tab

Manage Schedules - Create Schedule
The Create Schedule option displays one page where the user can enter and save all
required information to create a schedule.

Figure E–3 Create Schedule Screen

Schedule Executions
From the Schedule Executions page, the user can view all available historical schedule
executions. The page will display schedule executions for the last one week by default.
The user can use the search option to enter a different date range to fetch the
corresponding schedule executions.

Manage Configurations

Appendix E: Scheduler UI Screenshots E-3

Figure E–4 Schedule Executions Screen

Manage Configurations
Manage Configurations page allows the user to view/edit configuration for log levels,
notifications, and system options.

Log Level
Users can view log levels for all schedules. This page allows user to change log levels.

Figure E–5 View Log Levels

Build version and date is displayed on the info icon when the user selects the same.
The icon is on the extreme right top corner of the page.

Notifications
Users can view/edit notification details from the Notifications page.

System Logs

E-4 Oracle Retail Job Orchestration and Scheduler Implementation Guide

Figure E–6 Notifications Page

System Options
Users can view/create/update/delete system options from this page. It also allows
users to create credentials along with system options.

Figure E–7 System Options Page

System Logs
The System Logs page displays a list of all the schedule log files and the log contents.
Each schedule has its own log file, enabling easy access for the user to view the
execution logs and other information from the log files for diagnosing and
troubleshooting issues.

System Logs

Appendix E: Scheduler UI Screenshots E-5

Figure E–8 Scheduler Console System Logs Tab

System Logs

E-6 Oracle Retail Job Orchestration and Scheduler Implementation Guide

F

Appendix F: Process Flow UI Screenshots F-1

F Appendix F: Process Flow UI Screenshots

The screenshots in this appendix are part of the Process Flow User Interface.

About Process Flow Live
The Process Flow Live tab shows the details of the currently running processes. The
first section shows the summary of all processes running in the system. The next
section shows the list of all processes running since midnight. The last section shows
the activity details of the selected process.

Figure F–1 Process Flow Live Tab

About Manage Process Flow - Process Flow Executions
The Manage Process Flow tab is used to start a process flow, restart a failed process
flow, view/edit a process flow, list the executions instances of a process flow, and
view/edit the process flow configuration. A failed process flow instance can be
restarted only if it is the latest failed instance and there are no successful executions
after that.

Manage Process Flow - Process Flow Configurations

F-2 Oracle Retail Job Orchestration and Scheduler Implementation Guide

Figure F–2 Process Flow Executions Screen

Manage Process Flow - Process Flow Configurations
The Process Flow Configurations tab is used to set skip/hold flags on activities in a
flow. Call back flag and url can be selected from this page.

Figure F–3 Process Flow Configuration

Build version and date is displayed on the info icon when the user selects the same.
The icon is on the extreme right top corner of the page.

Manage Process Flow - Process Flow Details - Process Details

Appendix F: Process Flow UI Screenshots F-3

Manage Process Flow - Launch Process Flow
The Launch Process Flow tab is used to start a process flow with the provided process
parameters.

Figure F–4 Launch Process Flow Screen

Manage Process Flow - Process Flow Details - Process Details
The Process Details tab displays process activities and configuration in a tabular form.

Figure F–5 Process Details Tab

Manage Process Flow - Process Flow Details - Process DSL

F-4 Oracle Retail Job Orchestration and Scheduler Implementation Guide

Manage Process Flow - Process Flow Details - Process DSL
The Process DSL tab displays DSL for the selected process flow.

Figure F–6 Process DSL Tab

Historical Process Flow Executions
The Historical Process Flow Execution tab allows the user to look at the history of
process flow executions. The user can specify a date, a time interval, and a process
status. The application will list all the process flow executions matching the criteria.
The user can select any of the flow to see the activities details of that execution
instance. The page also provides the option to view the before and after values of all
process variables for each activity.

Figure F–7 Historical Process Flow Execution Tab

Managing Configurations
The Manage Configurations tab allows to manage system options, log levels, and
process notifications.

Managing Configurations

Appendix F: Process Flow UI Screenshots F-5

System Options
The System Options tab allows users to view, edit, and create system options. This
page displays the list of system options of the application. The user can modify the
value of the existing system options, create new system options, and delete the
existing system options. The user must have admin privileges for editing, creating,
and deleting system options. A search option based on the system options name and
value is also provided on this page.

Figure F–8 Manage Configurations Tab

Log Level
The Log Level tab displays log levels for all processes. Users can change log levels
from this tab.

Figure F–9 Log Level Tab

About System Logs

F-6 Oracle Retail Job Orchestration and Scheduler Implementation Guide

Process Notifications
The Process Notifications tab displays notification details. It allows user to change
notification details.

Figure F–10 Process Notifications Tab

About System Logs
The System Logs tab shows all the log files created by the process flow execution.
Clicking on the View icon will show the log file contents in the screen.

Figure F–11 System Logs Tab

G

Appendix G: Job Admin UI Screenshots G-1

G Appendix G: Job Admin UI Screenshots

The screenshots in this appendix are part of the Job Admin User Interface.

About the Batch Summary
This tab shows the summary of the system and details about the latest batch job
executions. It can be used to quickly find out whether the latest jobs are successful or
not. The last section of this page displays the step summary of the selected job.

Figure G–1 Batch Summary Tab

Manage Batch Jobs - Job Executions
This tab shows the executions of the selected jobs. It can be used to restart the failed
executions of a job. The restart button is available only for restartable executions in the
status column. When the user clicks the restart button, it is redirected to the job launch
tab with restart option and pre-populated value of job parameters from last run of the
execution. The user can edit the value of the existing parameters and enter new
parameters in a comma separated format.

Note: The URL is an infrastructure parameter. The user is not
allowed to change its value.

Manage Batch Jobs - Job Launch

G-2 Oracle Retail Job Orchestration and Scheduler Implementation Guide

Figure G–2 Job Executions Tab

Manage Batch Jobs - Job Launch
This tab can be used to launch jobs. Job Parameters is an optional input from the user
to launch the jobs. Multiple job parameters can be entered in a comma separated value
format.

Figure G–3 Job Launch Tab

Build version and date is displayed on the info icon when the user selects the same.
The icon is on the extreme right top corner of the page.

Job Stop
The Job Stop tab allows users to stop a job gracefully. There is no guarantee that the job
will stop as it depends on whether the job has implemented stop functionality
properly.

Manage Batch Jobs - Job Definition - Job XML Content

Appendix G: Job Admin UI Screenshots G-3

Figure G–4 Job Stop Tab

Manage Batch Jobs - Job Definition - Job Details
This tab shows the details of the selected job such as Job Description, Family, and
REST Service URL.

Figure G–5 Job Details Tab

Manage Batch Jobs - Job Definition - Job XML Content
This tab shows the details of the selected job XML content. Users can edit job XML
content from this tab.

Manage Configurations

G-4 Oracle Retail Job Orchestration and Scheduler Implementation Guide

Figure G–6 Job XML Content Tab

Manage Configurations
This tab shows the system options from the BDI_SYSTEM_OPTIONS table. It allows
the user to add, edit, and delete new system options as well as credentials.

System Logs

Appendix G: Job Admin UI Screenshots G-5

Figure G–7 System Options Tab

System Logs
This tab shows logs at the job and system level.

Figure G–8 System Logs Tab

System Logs

G-6 Oracle Retail Job Orchestration and Scheduler Implementation Guide

	Contents
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Customer Support
	Review Patch Documentation
	Improved Process for Oracle Retail Documentation Corrections
	Oracle Retail Documentation on the Oracle Technology Network
	Conventions

	1 Introduction
	Standards and Specifications
	Java Platform Enterprise Edition (Java EE)
	Java Batch
	Java EE Server

	Java Batch Overview

	2 JOS Components
	JOS Architecture

	3 Job Admin
	Job Admin Concepts
	Job Admin Components
	RESTFul Services
	Batch Service
	Job Metrics Service

	Job Admin UI
	Best Practices
	Job Admin Security
	Job Admin Customization
	Job Admin Troubleshooting
	Deployment Error
	Runtime WSMException
	Missing System Credentials
	Missing System Options

	4 JOS Process Flow
	Process Flow
	Process Flow Concepts
	DSL (Domain Specific Language)
	Begin Activity
	Activity
	End Activity
	Process Variables
	External Variables

	Process Flow DSL
	Process Flow DSL Characteristics
	DSL Keywords

	Process Flow Instrumentation
	Sub-Processes
	Process Schema
	Process Restart
	Statuses
	Implementing a JOS Flow
	Activity Features
	Skip Activity
	REST Endpoint to Set the Skip Activity Flag
	Hold/Release Activity
	REST Endpoint to Set the Hold Activity Flag
	Bulk Skip/Hold
	Callback Service
	How to Start Process Flow with Input Parameters
	Call Back from the Process Flow
	How to Invoke the Callback Service Declaratively
	How to Invoke the Callback Service Programmatically
	Callback Request Payload Structure

	Process Execution Trace
	Process Metrics Service

	Process Security
	Process Customization
	Seed Data
	Process DSL Reload

	Troubleshooting
	Process Flow Did Not Start
	Deleted Process Flow Still Listed in the UI

	Best Practices for Process Flow DSL

	5 Scheduler
	JOS Scheduler Features
	Scheduler Concepts
	Schedule Definition
	Schedule Execution
	Schedule Types
	Interval Schedules
	Calendar Schedules

	Scheduling Mechanisms
	Simple Scheduling
	Advanced Scheduling
	Schedule Frequency
	Schedule Start Datetime
	Schedule End Datetime
	Recurrence / Repeat Interval
	Schedule Next Run Datetime
	Schedule Timzone

	Schedule Action
	Schedule Action Definition

	Schedule Action Type
	Sync Action
	Async Action
	Schedule Action Execution Status
	Schedule Action Type and Execution Status
	Sync Action Execution Statuses
	Async Action Execution Statuses
	Schedule Status

	Scheduler Runtime
	Scheduler Startup
	Schedule Runtime Execution
	Schedule Execution - Async Action
	Schedule Execution - Sync Action
	Schedule Execution Failover
	Schedule Notification
	Scheduler Infrastructure Schema
	Best Practices for Scheduler

	Scheduler Console
	Schedule Summary
	Schedules and Executions

	Manage Schedules
	Creating a Schedule
	Basic Information
	Schedule Action
	Schedule Frequency

	Schedule Notification
	Starts:
	Fails:
	Triggered / Completed:
	Updating a Schedule
	Disabling a Schedule
	Enabling a Schedule
	Deleting a Schedule
	Schedule a Manual Run
	Schedule Executions
	Manage Configurations
	System Logs

	Scheduler Security Considerations
	Scheduler Security

	Scheduler Operational Considerations
	Users Roles for Monitoring and Administration
	Monitoring Schedules
	Schedule Action Execution Log

	Scheduler Log Files
	Maintaining Historical Schedule Executions

	Scheduler Customization
	Seed Data Reload
	Customizing Seed Data Schedules
	Customizing Schedule Actions

	Scheduler Troubleshooting
	Scheduler Known Issues

	6 Use Cases
	Creating Job Admin Batch Jobs
	Sample Job XML
	Passing Job Parameters
	Passing System Options
	Passing System Properties
	Chaining Multiple Jobs
	Sample Process Flow

	Creating Split Flows
	Sample Split Flow

	Creating Split and Join Flows
	Sample Split and Join Flow
	DefProcess Flow
	XyzProcess Flow

	Creating a Join Flow with Other Flows
	Sample Join Flow

	Sharing Data Between Process Flows
	Sample Flow that Shares Information with Other Flows

	Creating Schedules in Scheduler
	Using Sample Seed Data to Create a Schedule
	Scheduling an Action DSL
	Sample Action DSL

	7 Pre-Implementation Considerations
	Thread Pool Size in WebLogic
	Database Connection Pool Size in WebLogic

	8 High Availability Considerations
	About High Availability
	WebLogic Server Cluster Concepts
	Scaling JOS
	JOS on Cluster
	Logging
	Update Log Level
	Create/Update/Delete System Options
	Create/Update/Delete System Credentials
	Scheduler Configuration Changes for Cluster

	9 Deployment Architecture
	JOS and BDI Deployment Architecture for RMS
	JOS Deployment Architecture
	JOS Scalable Deployment Architecture

	10 Performance Considerations
	CPU and Memory Considerations

	11 OAuth 2.0
	OAuth 2.0 Architecture Diagram
	OAuth 2.0 Concepts
	OAuth 2.0 Use Case Flow
	OAuth 2.0 Terms
	JOS OAuth 2.0 Architecture
	OAuth 2 Service Provider
	Service Provider Configuration
	Scopes

	OHS Configuration
	OAuth Server Public Certificate
	OAuth 2.0 Servlet Filter

	OAuth 2.0 Service Consumer
	Access Services using OAuth 2.0 Consumer API
	Consumer Configuration
	Access Services using Curl

	A Appendix A: Scheduler REST Endpoints
	REST Resource Descriptions

	B Appendix B: Process Flow REST Endpoints
	C Appendix C: Job Admin REST Endpoints
	D Appendix D: System Setting Service
	Managing System Options Using Curl
	Creating System Options
	Updating System Options
	Deleting System Options
	Resetting System Options Cache
	Listing System Options

	Managing Credentials Using Curl
	Creating Credentials
	Updating Credentials
	Deleting Credentials
	Listing Credentials

	E Appendix E: Scheduler UI Screenshots
	Scheduler Summary
	Manage Schedules - Schedule Executions
	Manage Schedules - Create Schedule

	Schedule Executions
	Manage Configurations
	Log Level
	Notifications
	System Options

	System Logs

	F Appendix F: Process Flow UI Screenshots
	About Process Flow Live
	About Manage Process Flow - Process Flow Executions
	Manage Process Flow - Process Flow Configurations
	Manage Process Flow - Launch Process Flow
	Manage Process Flow - Process Flow Details - Process Details
	Manage Process Flow - Process Flow Details - Process DSL
	Historical Process Flow Executions
	Managing Configurations
	System Options
	Log Level
	Process Notifications

	About System Logs

	G Appendix G: Job Admin UI Screenshots
	About the Batch Summary
	Manage Batch Jobs - Job Executions
	Manage Batch Jobs - Job Launch
	Job Stop

	Manage Batch Jobs - Job Definition - Job Details
	Manage Batch Jobs - Job Definition - Job XML Content
	Manage Configurations
	System Logs

